DOI QR코드

DOI QR Code

Comparative Study of Floral Volatile Components in the Different Species of Robinia spp.

아까시나무(Robinia pseudoacacia L.)와 분홍아까시나무(R. margarettae 'Pink Cascade') 향기성분 조성 비교

  • Lee, Sujin (Division of Life Sciences, Major of Biological Sciences, Incheon National University) ;
  • Kim, Yeonggi (Division of Special Forest Product, National Institute of Forest Science) ;
  • Noh, Gwang Rae (Division of Life Sciences, Major of Biological Sciences, Incheon National University) ;
  • Lee, Hyun Sook (Division of Life Sciences, Major of Biological Sciences, Incheon National University) ;
  • Kim, Mun Seop (Division of Special Forest Product, National Institute of Forest Science) ;
  • Kim, Sea Hyun (Division of Special Forest Product, National Institute of Forest Science) ;
  • Kwon, Hyung Wook (Division of Life Sciences, Major of Biological Sciences, Incheon National University)
  • 이수진 (인천대학교 생명과학부 생명과학전공) ;
  • 김영기 (국립산림과학원 산림산림생명자원연구부 산림소득자원연구과) ;
  • 노광래 (인천대학교 생명과학부 생명과학전공) ;
  • 이현숙 (인천대학교 생명과학부 생명과학전공) ;
  • 김문섭 (국립산림과학원 산림산림생명자원연구부 산림소득자원연구과) ;
  • 김세현 (국립산림과학원 산림산림생명자원연구부 산림소득자원연구과) ;
  • 권형욱 (인천대학교 생명과학부 생명과학전공)
  • Received : 2019.09.12
  • Accepted : 2019.09.27
  • Published : 2019.09.30

Abstract

Plants release a large variety of volatile organic compounds (VOCs) into the surrounding atmosphere. Floral volatile compounds (FVCs) emitted from many plants is the critical factors for pollinator attraction and defense for adaptation in environments. Recent studies indicate that the chemical components contributing to FVCs play an important role in the honeybee attractiveness to flowers. Olfactory signals are rapidly learned, indicating that foraging behavior results from the association of plant chemicals acting as chemosensory cues for the bees. Solid phase microextraction(SPME)-GC/MS method was applied to analyze the chemical composition of FVCs according to the different species of Robinia spp. The abundant compounds identified in R. pseudoacacia were (Z)-β-ocimene (34.86%) and linalool (35.47%). Those of the tetraploid R. pseudoacacia were (Z)-β-ocimene (35.42%) and α-Farnesene (33.94%). The volatiles of R. margarettae 'Pink Cascade' comprised an abundance of (Z)-β-ocimene (42.73%), (E)-4,8-Dimethylnona-1,3,7-triene (37.23%). Differences in FVCs of the different species of Robinia spp. are discussed in light of biochemical constraints on volatile chemical synthesis and of the role of flower scent in ecology of pollination.

본 연구는 아까시나무 꽃으로부터 발산되는 휘발성 성분을 SPME법으로 추출하여 GC/MS를 통해 분석을 시도하여, 서로 다른 수종 별로 발산하는 FVCs의 성분과 그 구성비율이 확연하게 차이가 있음을 알 수 있었다. 아까시나무, 4배체 아까시나무, 분홍아까시나무에서 FVCs 분석결과를 비교해 볼 때 차이를 보이는 주요 FVCs는 각각 Linalool (35.47%), α-Farnesene (33.94%), (E)-4,8-Dimethylnona-1,3,7-triene (37.23%)으로 나타났으며, 공통적으로 (Z)-β-ocimene이 30% 이상을 차지하고 있음을 확인하였다. 이에 따라 수종 간 FVCs 조성비의 차이가 꿀벌의 방화 행동 유도에 중요한 역할을 할 것으로 추측되며, 아까시나무의 FVCs에 대한 꿀벌의 선호도 및 방화 행동의 연관성에 대해 심층적인 연구가 수행되어야 할 것으로 보인다.

Keywords

References

  1. 강귀환. 1998. 한국산 밤꿀의 휘발성 향기성분. 한국농화학학회지 41(1): 84-88.
  2. 김세현. 2012. 한국 밀원식물의 발굴과 전망. 한국양봉학회 학술대회 자료집 10: 9-24.
  3. 김은선, 이종욱. 1996. K/Na Ratio를 이용한 토종꿀과 양봉꿀의 품질 특성 비교. 한국식품영양과학회지 25(4): 672-679.
  4. 백준필, 마하무다 악타 밀리, 최인이, 윤혁성, 김영설, 박완근, 권명철, 강호민. 2015. 곰취속 몇몇 종의 내적 품질과 휘발성 향기성분과 비교. 시설원예식물공장 24(1): 21-26.
  5. 손영모, 김소원, 이선정, 김정수. 2014. 아까시나무 임분의 임목수확량 및 탄소저장량 추정. 한국산림과학회지 103(2): 264-269.
  6. 이경준. 1998. 한국 목본류 주요및 보조밀원수종과 화분원수종의 분류와 개화기별 자원분포 현황. 서울대학교수목원연구보고 18: 57-71.
  7. 이경준. 2008. 아까시나무 신품종 개발 현황. 한국양봉학회 학술대회 자료집 10: 5-14.
  8. 이경준. 2009. 아까시나무 밀원수 신품종 개발현황. 한국양봉학회 학술대회 자료집 10: 23-36.
  9. 이창복. 2003. 원색 대한식물도감(상, 하). 서울: 향문사.
  10. 이희영, 정은정, 전선영, 조민숙, 조우진, 김희대, 차용준. 2008. 지역별 생산 양파종의 휘발성 향기성분 비교분석. 한국식품영양과학회지 37(12): 1609-1614. https://doi.org/10.3746/jkfn.2008.37.12.1609
  11. 정제원, 이현숙, 노광래, 김문섭, 이안도성, 김세현, 권형욱. 2017. 아까시나무(Robinia Pseudoacacia L.) 꽃의 개화 단계별 향기성분 조성 비교. 한국양봉학회지 32(3): 139-146. https://doi.org/10.17519/apiculture.2017.09.32.3.139
  12. 조명희, 김준범, 조윤원, 백승렬. 2001. 아까시나무 밀원식물단지적지 선정을 위한 위성영상과 GIS의 응용기법. 한국지리정보학회지 4(2): 27-37.
  13. 한진규, 강문수, 김세현, 이갑연, 백을선. 2009. 경기도 수원지역 아까시나무의 개화, 꿀벌방화 및 화밀분비 특성. 한국양봉학회지 24(3): 147-152.
  14. Aboshi, T., A. Toda, T. Ashitani and T. Murayama. 2019. A Herbivore-Induced Homoterpene Volatile Is Emitted from Basella Alba Leaves. Biosci. Biotechnol. Biochem. 1-3.
  15. Aronne, G., M. Giovanetti, R. Sacchi and V. D. Micco. 2014. From Flower to Honey Bouquet: Possible Markers for the Botanical Origin of Robinia Honey. Sci. World J. 1-7. http://dx.doi.org/10.1155/2014/547275
  16. Blight, M. M., M. L. Metayer, M. H. P. Delegue, J. A. Pickett, F. Marion-Poll and L .J. Wadhams. 1997. Identification of Floral Volatiles Involved in Recognition of Oilseed Rape Flowers, Brassica Napus by Honeybees, Apis Mellifera. J. Chem. Ecol. 23(7): 1715-1727. https://doi.org/10.1023/B:JOEC.0000006446.21160.c1
  17. Dicke, M. and I. T. Baldwin. 2010. The Evolutionary Context for Herbivore-Induced Plant Volatiles: Beyond the 'cry for Help'. Trends in Plant Sci. 15(3): 167-175. https://doi.org/10.1016/j.tplants.2009.12.002
  18. Eisenreich, W., S. Sagner, M. H. Zenk and A. Bacher. 1997. Monoterpenoid Essential Oils Are Not of Mevalonoid Origin. Tetrahedron Lett. 38(22): 3889-3892. https://doi.org/10.1016/S0040-4039(97)00761-2
  19. El-Sayed, A. M., J. A. Byers, L. M. Manning, A. Jurgens, V. J. Mitchell and D. M. Suckling. 2008. Floral Scent of Canada Thistle and Its Potential as a Generic Insect Attractant. J. Econ. Entomol. 101(3): 720-727. https://doi.org/10.1603/0022-0493(2008)101[720:FSOCTA]2.0.CO;2
  20. Fancelli, M., M. Borges, R. A. Laumann, J. A. Pickett, M. A. Birkett and M. C. Blassioli-Moraes. 2018. Attractiveness of Host Plant Volatile Extracts to the Asian Citrus Psyllid, Diaphorina Citri, Is Reduced by Terpenoids from the Non-Host Cashew. J. Chem. Ecol. 44(4): 397-405. https://doi.org/10.1007/s10886-018-0937-1
  21. Guyot, C., A. Bouseta, V. Scheirman and S. Collin. 1998. Floral Origin Markers of Chestnut and Lime Tree Honeys. J. Agric. Food Chem. 46(2): 625-633. https://doi.org/10.1021/jf970510l
  22. Hanneguelle, S., J. N. Thibault, N. Naulet and G. J. Martin. 1992. Authentication of Essential Oils Containing Linalool and Linalyl Acetate by Isotopic Methods. J. Agric. Food Chem. 40(1): 81-87. https://doi.org/10.1021/jf00013a016
  23. He, X. J., X. C. Zhang, W. J. Jiang, A. B. Barron, J. H. Zhang and Z. J. Zeng. 2016. Starving Honey Bee (Apis Mellifera) Larvae Signal Pheromonally to Worker Bees. Sci. Rep. 6: 22359. https://doi.org/10.1038/srep22359
  24. Kessler, A. and R. Halitschke. 2007. Specificity and Complexity: The Impact of Herbivore-Induced Plant Responses on Arthropod Community Structure. Curr. Opin. Plant Biol. 10(4): 409-414. https://doi.org/10.1016/j.pbi.2007.06.001
  25. Knudsen, J. T., L. Tollsten and L. G. Bergstrom. 1993. Floral Scents - a Checklist of Volatile Compounds Isolated by Head-Space Techniques. Phytochemistry 33(2): 253-280. https://doi.org/10.1016/0031-9422(93)85502-I
  26. Lange, B. M., T. Rujan, W. Martin and R. Croteau. 2000. Isoprenoid Biosynthesis: The Evolution of Two Ancient and Distinct Pathways across Genomes. PNAS. 297(24): 13172-13177.
  27. Lee, C. S., H. J. Cho and H. Yi. 2004. Stand Dynamics of Introduced Black Locust (Robinia Pseudoacacia L.) Plantation under Different Disturbance Regimes in Korea. For. Ecol. Manage. 189(1): 281-293. https://doi.org/10.1016/j.foreco.2003.08.012
  28. Magalhaes, D. M., M. Borges, R. A. Laumann, C. M. Woodcock, J. A. Pickett, M. A. Birkett and M. C. Blassioli-Moraes. 2016. Influence of Two Acyclic Homoterpenes (Tetranorterpenes) on the Foraging Behavior of Anthonomus Grandis Boh. J. Chem. Ecol. 42(4): 305-313. https://doi.org/10.1007/s10886-016-0691-1
  29. Maisonnasse, A., J. C. Lenoir, D. Beslay, D. Crauser and Y. L. Conte. 2010. E-β-Ocimene, a Volatile Brood Pheromone Involved in Social Regulation in the Honey Bee Colony (Apis Mellifera). PloS One 5(10): e13531. https://doi.org/10.1371/journal.pone.0013531
  30. McAfee, A., T. F. Collins, L. L. Madilao and L. J. Foster. 2017. Odorant Cues Linked to Social Immunity Induce Lateralized Antenna Stimulation in Honey Bees(Apis Mellifera L.). Sci. Rep. 7: 46171. https://doi.org/10.1038/srep46171
  31. Radovic, B. S., M. Careri, A. Mangia, M. Musci, M. Gerboles and E. Anklam. 2001. Contribution of Dynamic Headspace GC-MS Analysis of Aroma Compounds to Authenticity Testing of Honey. Food Chem. 72(4): 511-520. https://doi.org/10.1016/S0308-8146(00)00263-6
  32. Raguso, R. A. and E. Pichersky. 1999. New Perspectives in Pollination Biology: Floral Fragrances. A Day in the Life of a Linalool Molecule: Chemical Communication in a Plant-Pollinator System. Part 1: Linalool Biosynthesis in Flowering Plants. Plant Species Biol. 14(2): 95-120. https://doi.org/10.1046/j.1442-1984.1999.00014.x
  33. Soria, A. C., J. Sanz and I. Martinez-Castro. 2009. SPME Followed by GC-MS: A Powerful Technique for Qualitative Analysis of Honey Volatiles. Eur. Food Res. Technol. 228(4): 579-590. https://doi.org/10.1007/s00217-008-0966-z
  34. Stashenko, E. E. and J. R. Martinez. 2008. Sampling Flower Scent for Chromatographic Analysis. J. Sep. Sci. 31(11): 2022-2031. https://doi.org/10.1002/jssc.200800151
  35. Tan, S. T., P. T. Holland, A. L. Wilkins and P. C. Molan. 1988. Extractives from New Zealand Honeys. 1. White Clover, Manuka and Kanuka Unifloral Honeys. J. Agric. Food Chem. 36(3): 453-460. https://doi.org/10.1021/jf00081a012
  36. Wilkins, A. L., Y. Lu and S. T. Tan. 1993. Extractives from New Zealand Honeys. 4. Linalool Derivatives and Other Components from Nodding Thistle (Carduus Nutans) Honey. J. Agric. Food Chem. 41(6): 873-878. https://doi.org/10.1021/jf00030a006
  37. Xie, J., B. Sun and M. Yu. 2006. Constituents of Top Fragrance from Fresh Flowers of Robinia Pseudoacacia L. Occurring in China. Flavour Fragr. J. 21(5): 798-800. https://doi.org/10.1002/ffj.1720