DOI QR코드

DOI QR Code

Recycling Technologies of Aluminum

알루미늄의 리사이클링 기술

  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
  • Received : 2019.01.21
  • Accepted : 2019.03.19
  • Published : 2019.04.30

Abstract

Aluminum is the most abundant metal and the second most plentiful metallic element in the earth's crust, after silicon. Aluminum is a light, conductive, and corrosion resistant metal with strong affinity for oxygen. However, the primary aluminum production process is highly energy intensive. The recycling of aluminum scrap reduces the energy consumption and environmental burden, comparing to the primary metal production. However, the amount of the recovered metal from scrap is limited because of the difficulties to remove the impurities in the scrap. This work provides an overview of the aluminum production and recycling process, from the preparation of alumina to the scrap upgrading and the melting process.

알루미늄은 지각 구성 원소 중 실리콘에 이어 두 번째로 풍부한 금속원소이다. 알루미늄은 가볍고, 전기전도도가 우수하고, 내식성이 우수하지만 산소와의 친화력이 강한 특성을 가지고 있다. 그러나 알루미늄의 1차 지금을 제조하기 위해서는 다량의 에너지를 소비한다. 한편 알루미늄 스크랩을 리사이클링하면 1차 지금 생산과 비교하여 에너지 및 환경부하를 저감할 수 있다. 그러나 알루미늄 스크랩 중의 불순물 제거가 곤란하여 재생되는 양은 한정되어 있다. 본 논문에서는 알루미나의 제조부터 스크랩 처리 및 용융까지의 알루미늄 생산 및 리사이클링 공정에 대하여 고찰하였다.

Keywords

RSOCB3_2019_v28n2_3_f0001.png 이미지

Fig. 1. Flow chart of secondary Al refining operations for the production of Al alloys.

RSOCB3_2019_v28n2_3_f0002.png 이미지

Fig. 2. Flow sheets of Bayer’s process and sintering process.

RSOCB3_2019_v28n2_3_f0003.png 이미지

Fig. 3. Schematic illustration of aluminium production by electrolysis.

RSOCB3_2019_v28n2_3_f0004.png 이미지

Fig. 4. A schematic illustration of three-layer process of Al refining.

RSOCB3_2019_v28n2_3_f0005.png 이미지

Fig. 5. Global share of primary and recycled metal production.

RSOCB3_2019_v28n2_3_f0006.png 이미지

Fig. 6. Swing-hammer shredders for the comminution of automobile scrap and other types of light scrap.

RSOCB3_2019_v28n2_3_f0007.png 이미지

Fig. 7. Overhead-belt magnetic separators(a) and eddy-current separator.

RSOCB3_2019_v28n2_3_f0008.png 이미지

Fig. 8. A schematic representation of thermal de-coating.

RSOCB3_2019_v28n2_3_f0009.png 이미지

Fig. 10. End-of-life vehicle dismantling and aluminum recycling process.

RSOCB3_2019_v28n2_3_f0010.png 이미지

Fig. 9. Schematic presentation of swell-peeling method of paints on aluminum beverage cans.

RSOCB3_2019_v28n2_3_f0011.png 이미지

Fig. 11. Schematic diagrams of lance degassing(a) and rotary degassing(b)

Table 1. Classification of wrought aluminum alloys according to their strengthening mechanism

RSOCB3_2019_v28n2_3_t0001.png 이미지

Table 2. Average lifetime ranges for aluminum products in years and world end-use markets for aluminum products, 2015

RSOCB3_2019_v28n2_3_t0002.png 이미지

Table 3. Markets consuming post-consumer Al scrap

RSOCB3_2019_v28n2_3_t0003.png 이미지

Table 4. Classification of sorting methods showing the physical parameter and the desired separation.

RSOCB3_2019_v28n2_3_t0004.png 이미지

Table 6. Characteristics of melting furnace

RSOCB3_2019_v28n2_3_t0005.png 이미지

Table 5. Type of furnaces for melting of aluminum

RSOCB3_2019_v28n2_3_t0006.png 이미지

Table 7. Activity coefficients of tramp elements for aluminum refining

RSOCB3_2019_v28n2_3_t0007.png 이미지

References

  1. Sohn, Hosang, 2019 : Engineering of Resources Recycling, p.14, KNU Press, Daegu.
  2. C. Springer and A. Hasanbeigi, 2016 : Emerging Energy Efficiency and Carbon Dioxide Emissions-Reduction Technologies for Industrial Production of Aluminum, p.9, Ernest Orlando Lawrence Berkeley National Laboratory.
  3. Stefano Capuzzi and Giulio Timelli, 2018 : Preparation and Melting of Scrap in Aluminum Recycling, Metals 8, 249, pp.1-24.
  4. SINTEF, 2010 : Roadmap From Europe and North America, Workshop on Aluminium Recycling, NTNU, 13th-15th June, Trondheim, Norway
  5. Sohn, Hosang, 2019 : Engineering of Resources Recycling, p.94, KNU Press, Daegu.
  6. Anne Kvithyld et al., 2008 : Recycling Light Metals: Optimal Thermal De-coating, JOM 60(8), pp.47-51. https://doi.org/10.1007/s11837-008-0107-y
  7. T. Takahashi et al., 1997 : Recycling of Aluminum Used Beverage Can, Kobe Steel Engineering Reports 47(3), pp.35-38.
  8. Joseph R. Davis, 2001 : Aluminum and Aluminum Alloys, Alloying-Understanding the Basics, p.354, ASM International, Ohio, USA.
  9. K. Oosumi, Y. Nagakura, and R. Masuda, 2001 : Development of New Filter for Removal of Non-metallic Inclusions from the Molten Aluminum, Kobe Steel Engineering Reports 51(2), pp.54-57.
  10. Sung-Kil Hong, 2008 : Series II-Melting and Casting of Aluminum Alloys, J. Kor. Foundarymen's Soc. 28(2), pp.45-51.
  11. T. Ohnishi, 1989 : Hydrogen in pure aluminum and in aluminum alloys, Keikinzoku 43(3), pp.235-573.
  12. T. A. Utigard et al., 1998 : The properties and uses of fluxes in molten aluminum processing, JOM 50(11), pp.38-43. https://doi.org/10.1007/s11837-998-0285-7
  13. T. Nakamura, 1996 : Recycle Processes of Aluminum, Materia Japan 35(12), pp.1290-1293. https://doi.org/10.2320/materia.35.1290
  14. C. Han et al., 2017 : Study on the Recovery of Metallic Aluminum in Black Dross generated from the Used Beverage Cans (UBC) Recycling Process with Crushing Mechanism, J. Kor. Inst. of Resources Recycling 26(4), pp.71-78. https://doi.org/10.7844/kirr.2017.26.2.71
  15. H. Park et al., 1996 : Pretreatment for Recycling of Domestic Aluminum Dross, J. Kor. Inst. of Resources Recycling 5(1), pp.14-20.