DOI QR코드

DOI QR Code

Terahertz time domain spectroscopy of GdBCO superconducting thin films

  • Ji, Gangseon (Department of Physics, Chungbuk National University) ;
  • Park, Woongkyu (Department of Physics and Astronomy and Center for Atom Scale Electromagnetism, Seoul National University) ;
  • Lee, Hyoung-Taek (Department of Physics, Chungbuk National University) ;
  • Song, Chang-Yun (Department of Physics, Chungbuk National University) ;
  • Seo, Choongwon (Department of Physics, Chungbuk National University) ;
  • Park, Minjo (Department of Physics, Chungbuk National University) ;
  • Kang, Byeongwon (Department of Physics, Chungbuk National University) ;
  • Kim, Kyungwan (Department of Physics, Chungbuk National University) ;
  • Kim, Dai-Sik (Department of Physics and Astronomy and Center for Atom Scale Electromagnetism, Seoul National University) ;
  • Park, Hyeong-Ryeol (Department of Physics, Chungbuk National University)
  • Received : 2019.03.05
  • Accepted : 2019.03.27
  • Published : 2019.03.31

Abstract

We present terahertz optical properties of $GdBa_2Cu_3O_{7-x}$ (GdBCO) superconducting thin films. GdBCO films with a thickness of about 105 nm were grown on a $LaAlO_3$ (LAO) single crystal substrate using a conventional pulsed laser deposition (PLD) technique. Using an Ar ion milling system, the thickness of the GdBCO film was reduced to 58 nm, and its surface was also smoothened. Terahertz (THz) transmission spectra through two different GdBCO films are measured over the range between 0.2 and 1.5 THz using THz time domain spectroscopy. Interestingly, the THz transmission of the thinner GdBCO film has been increased to six times larger than that of the thicker one, while the thinner film is still maintaining its superconducting property at below 90 K.

Keywords

CJJOCB_2019_v21n1_15_f0001.png 이미지

Fig. 1. Schematic diagram of a transmission-type THz time domain spectroscopy based on a GaAs photoconductive antenna and a 1 mm-thick ZnTe (110) crystal as a detector with a low temperature cryostat. QWP: Quarter Wave-Plate. BS: Beam Splitter.

CJJOCB_2019_v21n1_15_f0002.png 이미지

Fig. 3. Scanning electron microscope (SEM) images of the cross-section of the two GdBCO films with the thicknesses of (a) 105 nm and (b) 58 nm.

CJJOCB_2019_v21n1_15_f0003.png 이미지

Fig. 5. Temperature-dependent transmittance curves of the two GdBCO films with the thicknesses of 105 nm (blue triangle) and 58 nm (red circle) at 0.7 THz.

CJJOCB_2019_v21n1_15_f0004.png 이미지

Fig. 2. (a) Electro-optic sampling signal in time-domain, through the bare aperture (black dashed), LAO (red solid), and STO (blue dashed dot). (b) Transmitted electric field amplitude spectra of LAO and STO.

CJJOCB_2019_v21n1_15_f0005.png 이미지

Fig. 4. (a) THz time-domain signals through the 58 nm-thick GdBCO film depending on the temperature in the range of 22 K and 200 K. (b) Fourier-transformed THz transmittance spectra in the frequency range between 0.2 and 1.5 THz.

References

  1. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry," Phys. Rev. Lett., vol. 99, pp. 147401, 2007. https://doi.org/10.1103/PhysRevLett.99.147401
  2. H. T. Chen, H. Yang, R. Singh, J. F. O'Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, "Tuning the resonance in high-temperature superconducting terahertz metamaterials," Phys. Rev. Lett., vol. 105, pp. 247402, 2010. https://doi.org/10.1103/PhysRevLett.105.247402
  3. J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, "Tuning of superconducting niobium nitride terahertz metamaterials," Opt. Express, vol. 19, pp. 12021, 2011. https://doi.org/10.1364/OE.19.012021
  4. N. I. Zheludev and Y. S. Kivshar, "From metamaterials to metadevices," Nat. Mater., vol. 11, pp. 917, 2012. https://doi.org/10.1038/nmat3431
  5. V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. de Groot, and N. I. Zheludev, "Modulating sub-THz radiation with current in superconducting metamaterial," Phys. Rev. Lett., vol. 109, pp. 243904, 2012. https://doi.org/10.1103/PhysRevLett.109.243904
  6. R. Singh and N. Zheludev, "MATERIALS Superconductor photonics," Nat. Photonics, vol. 8, pp. 679, 2014. https://doi.org/10.1038/nphoton.2014.206
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, vol. 391, pp. 667, 1998. https://doi.org/10.1038/35570
  8. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B, vol. 58, pp. 6779, 1998. https://doi.org/10.1103/PhysRevB.58.6779
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824, 2003. https://doi.org/10.1038/nature01937
  10. F. Wang and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett., vol. 97, pp. 206806, 2006. https://doi.org/10.1103/PhysRevLett.97.206806
  11. D. Y. Wang, Z. Tian, C. H. Zhang, X. Q. Jia, B. B. Jin, J. Q. Gu, J. G. Han, and W. L. Zhang, "Terahertz superconducting metamaterials for magnetic tunability," J. Opt., vol. 16, pp. 094013, 2014. https://doi.org/10.1088/2040-8978/16/9/094013
  12. W. Hu, S. Kaiser, D. Nicoletti, C. R. Hunt, I. Gierz, M. C. Hoffmann, M. Le Tacon, T. Loew, B. Keimer, and A. Cavalleri, "Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling," Nat. Mater., vol. 13, pp. 705, 2014. https://doi.org/10.1038/nmat3963
  13. J. Keller, G. Scalari, F. Appugliese, E. Mavrona, S. Rajabali, M. J. Suess, M. Beck, and J. Faist, "High T-c Superconducting THz Metamaterial for Ultrastrong Coupling in a Magnetic Field," ACS Photonics, vol. 5, pp. 3977, 2018. https://doi.org/10.1021/acsphotonics.8b01025
  14. D. Grischkowsky, S. Keiding, M. Vanexter, and C. Fattinger, "Far-Infrared Time-Domain Spectroscopy with Terahertz Beams of Dielectrics and Semiconductors," J. Opt. Soc. Am. B, vol. 7, pp. 2006, 1990. https://doi.org/10.1364/JOSAB.7.002006
  15. H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, "Colossal Absorption of Molecules Inside Single Terahertz Nanoantennas," Nano Lett., vol. 13, pp. 1782, 2013. https://doi.org/10.1021/nl400374z
  16. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics, vol. 3, pp. 152, 2009. https://doi.org/10.1038/nphoton.2009.22
  17. H. R. Park, Y. M. Park, H. S. Kim, J. S. Kyoung, M. A. Seo, D. J. Park, Y. H. Ahn, K. J. Ahn, and D. S. Kim, "Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance," Appl. Phys. Lett., vol. 96, pp. 121106, 2010. https://doi.org/10.1063/1.3368690
  18. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, "Active Terahertz Nanoantennas Based on VO2 Phase Transition," Nano Lett., vol. 10, pp. 2064, 2010. https://doi.org/10.1021/nl1002153
  19. Y. G. Jeong, S. Han, J. Rhie, J. S. Kyoung, J. W. Choi, N. Park, S. Hong, B. J. Kim, H. T. Kim, and D. S. Kim, "A Vanadium Dioxide Metamaterial Disengaged from Insulator-toMetal Transition," Nano Lett., vol. 15, pp. 6318, 2015. https://doi.org/10.1021/acs.nanolett.5b02361
  20. J. Jeong, D. Kim, H. R. Park, T. Kang, D. Lee, S. Kim, Y. M. Bahk, and D. S. Kim, "Anomalous extinction in index-matched terahertz nanogaps," Nanophotonics, vol. 7, pp. 347, 2018. https://doi.org/10.1515/nanoph-2017-0058

Cited by

  1. Measuring Complex Refractive Indices of a Nanometer-Thick Superconducting Film Using Terahertz Time-Domain Spectroscopy with a 10 Femtoseconds Pulse Laser vol.11, pp.6, 2021, https://doi.org/10.3390/cryst11060651