DOI QR코드

DOI QR Code

Towards searching for Majorana fermions in topological insulator nanowires

  • Kim, Hong-Seok (Department of Physics and Photon Science, Gwangju Institute of Science and Technology) ;
  • Doh, Yong-Joo (Department of Physics and Photon Science, Gwangju Institute of Science and Technology)
  • Received : 2019.01.11
  • Accepted : 2019.02.08
  • Published : 2019.03.31

Abstract

Developing a gate-tunable, scalable, and topologically-protectable supercurrent qubit and integrating it into a quantum circuit are crucial for applications in the fields of quantum information technology and topological phenomena. Here we propose that the nano-hybrid supercurrent transistors, a superconducting quantum analogue of a transistor, made of topological insulator nanowire would be a promising platform for unprecedented control of both the supercurrent magnitude and the current-phase relation by applying a voltage on a gate electrode. We believe that our experimental design will help probing Majorana state in topological insulator nanowire and establishing a solid-state platform for topological supercurrent qubit.

Keywords

CJJOCB_2019_v21n1_6_f0001.png 이미지

Fig. 1. Schematic view of our experimental designs for the measurements of (a) anomalous Shapiro steps, (b) currentphase relation, and (c) zero-bias conductance peak as an evidence of Majorana fermion state in topological insulator nanowire.

CJJOCB_2019_v21n1_6_f0002.png 이미지

Fig. 2. Current vs. voltage characteristic curve obtained from (Bi1-xSbx)2Se3 TI nanowire contacted with PbIn superconducting electrodes. The arrows indicate a hysteretic behavior. Inset: representative scanning electron microscopy image of TI nanowire-based JJ. Scale bar indicates 1 μm.

References

  1. B. D. Josephson, Phys. Lett., vol. 1, p. 251, 1962. https://doi.org/10.1016/0031-9163(62)91369-0
  2. J. Q. You and F. Nori, Nature, vol. 474, p. 589, 2011. https://doi.org/10.1038/nature10122
  3. J. Clarke and F. K. Wilhelm, Nature, vol. 453, p. 1031, 2008. https://doi.org/10.1038/nature07128
  4. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. -S. Huang, et al., Nature, vol. 431, p. 162, 2004. https://doi.org/10.1038/nature02851
  5. J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, et al., Nature, vol. 519, p. 66, 2015. https://doi.org/10.1038/nature14270
  6. R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, et al., Phys. Rev. Lett., vol. 111, p. 080502, 2013.. https://doi.org/10.1103/PhysRevLett.111.080502
  7. Y. -J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L. P. Kouwenhoven, et al., Science, vol. 309, p. 272, 2005. https://doi.org/10.1126/science.1113523
  8. P. Herrero-Jarillo, J. A. van Dam and L. P. Kouwenhoven, Nature, vol. 439, p. 953, 2006. https://doi.org/10.1038/nature04550
  9. H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen and A. F. Morpurgo, Nature, vol. 446, p. 56, 2007. https://doi.org/10.1038/nature05555
  10. J. Xiang, A. Vidan, M. Tinkham, R. M. Westervelt and C. M. Lieber, Nature Nanotechnology, vol. 1, p. 208, 2007. https://doi.org/10.1038/nnano.2006.140
  11. J. -H. Choi, G. -H. Lee, S. Park, D. Jeong, J. -O. Lee, et al., Nature Communications, vol. 4, p. 2525, 2013. https://doi.org/10.1038/ncomms3525
  12. M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. K. Guduru, et al., Nature Materials, vol. 11, p. 417, 2012. https://doi.org/10.1038/nmat3255
  13. H. -S. Kim, B. -K. Kim, Y. M. Yang, X. Peng, S. -G. Lee, et al., Applied Physics Express, vol. 9, p. 023102, 2016. https://doi.org/10.7567/APEX.9.023102
  14. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, et al., Nature Physics, vol. 8, p. 887, 2012. https://doi.org/10.1038/nphys2479
  15. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, et al., Science, vol. 336, p. 1003, 2012. https://doi.org/10.1126/science.1222360
  16. T. W. Larsen, K. D. Petersson, F. Kuemmeth, T. S. Jespersen, P. Krogstrup, et al., Phys. Rev. Lett., vol. 115, p. 127001, 2015. https://doi.org/10.1103/PhysRevLett.115.127001
  17. G. de Lange, B. van Heck, A. Bruno, D. J. van Woerkom, A. Geresdi, et al., Phys. Rev. Lett., vol. 115, p. 127002, 2015. https://doi.org/10.1103/PhysRevLett.115.127002
  18. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys., vol. 82, p. 3045, 2010. https://doi.org/10.1103/RevModPhys.82.3045
  19. L. Fu and C. L. Kane, Phys. Rev. Lett., vol. 100, p. 096407, 2008. https://doi.org/10.1103/PhysRevLett.100.096407
  20. H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, et al., Nature Materials, vol. 9, p. 225, 2009. https://doi.org/10.1038/nmat2609
  21. L. A. Jauregui, M. T. Pettes, L. P. Rokhinson, L. Shi and Y. P. Chen, Nature Nanotechnology, vol. 11, p. 345, 2016. https://doi.org/10.1038/nnano.2015.293
  22. F. de Juan, R. Ilan and J. H. Bardarson, Phys. Rev. Lett., vol. 113, p. 107003, 2014. https://doi.org/10.1103/PhysRevLett.113.107003
  23. L. P. Rokhinson, X. Liu and J. K. Furdyna, Nature Physics, vol. 8, 2012.
  24. H. -S. Kim, H. S. Shin, J. S. Lee, C. W. Ahn, J. Y. Song, et al., Current Applied Physics, vol. 16, pp. 51-56, 2016. https://doi.org/10.1016/j.cap.2015.10.011
  25. J. Kim, A. Hwang, S. -H. Lee, S. -H. Jhi, S. Lee, et al., Acs Nano, vol. 10, pp. 3936-3943, 2016. https://doi.org/10.1021/acsnano.5b07368
  26. J. Kim, B. -K. Kim, H. -S. Kim, A. Hwang, B. Kim, et al., Nano Letters, vol. 17, pp. 6997-7002, 2017. https://doi.org/10.1021/acs.nanolett.7b03571
  27. N. -H. Kim, Y. -S. Shin, H. -S. Kim, J. -D. Song and Y. -J. Doh, Current Applied Physics, vol. 18, pp. 384-387, 2018. https://doi.org/10.1016/j.cap.2018.01.016
  28. B. -K. Kim, H. -S. Kim, Y. Yang, X. Peng, D. Yu, et al., Acs Nano, vol. 11, pp. 221-226, 2017. https://doi.org/10.1021/acsnano.6b04774
  29. H. Im, H. -S. Kim, N. -H. Kim and Y.-J. Doh, New Phys.: Sae Mulli, vol. 68, pp. 1041-1047, 2018. https://doi.org/10.3938/NPSM.68.1041

Cited by

  1. Multiple andreev reflections in topological insulator nanoribbons vol.34, 2019, https://doi.org/10.1016/j.cap.2021.12.003