Fig. 1. Overall Process of Proposed Model
Fig. 2. Code generation process for IoT medical information
Fig. 3. Medical Service Care Time to Analyze/Process IoT Patient Information
Fig. 4. Server efficiency in collecting and processing IoT patient information
Fig. 5. Overhead of server according to number of IoT patient information
Table 1. Parameter Setup
References
- J. G. Choi & B. N. Noh. (2011). Security Technology Research in Cloud Computing Environment. Journal of Security Engineering, 8(3), 371-384.
- Y. S. Jeong. (2015). An Efficiency Management Scheme using Big Data of Healthcare Patients using Puzzy AHP. Journal of Digital Convergence, 13(4), 227-233. https://doi.org/10.14400/JDC.2015.13.4.227
- Y. S. Jeong. (2016). An Efficient IoT Healthcare Service Management Model of Location Tracking Sensor. Journal of Digital Convergence, 14(3), 261-267. https://doi.org/10.14400/JDC.2016.14.3.261
- Y. S. Jeong. (2016). Measuring and Analyzing WiMAX Security adopt to Wireless Environment of U-Healthcare. Journal of Digital Convergence, 11(3), 279-284. https://doi.org/10.14400/JDPM.2013.11.3.279
- A. Singh & K. Chatterjee. (2017). Cloud security issues and challenges: A survey. Journal of Network and Computer Applications, 79, 88-115. https://doi.org/10.1016/j.jnca.2016.11.027
- H. Bao & R. Lu. (2015). A new differentially private data aggregation with fault tolerance for smart grid communications. IEEE Internet of Things Journal, 2(3), 248-258. https://doi.org/10.1109/JIOT.2015.2412552
- J. Qian, F. Qiu, F. Wu, N. Ruan, G. Chen & S. Tang. (2017). Privacy preserving selective aggregation of online user behavior data. IEEE Trans. Computers, 66(2), 326-338. https://doi.org/10.1109/TC.2016.2595562
- X. Cui, P. Zhu, X. Yang, K. Li & C. Ji. (2014). Optimized big data K-means clustering using MapReduce. Journal of Supercomputing, 70(3), 1249-1259. https://doi.org/10.1007/s11227-014-1225-7
- W. Zhao, H. Ma & Q. He. (2009). Parallel k-means clustering based on mapreduce. Proceedings of the 1st International Conference on Cloud Computing, 674-679.
-
B. Bahmani, B. Moseley, A. Vattani, R. Kumar & S. Vassivitskii. (2012). Scalable k-means
$^{++}$ . Proceedings of the VLDB Endowment, 5(7), 622-633. - X. Cai, F. Nie & H. Huang. (2013). Multi-view k-means clustering on big data. Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, AAAI Press, 2598-2604.
- H. Karau, A. Konwinski, P. Wendell & M. Zaharia. (2015). Learning Spark: Lightning-Fast Big Data Analysis. O'Reilly Media, Inc. 1-276.
- Y. H. Kim, K S. Shim, M. S. Kim & J. S. Lee. (2014). DBCURE-MR: an efficient density-based clustering algorithm for large data using MapReduce. Journal of Information Systems, 42, 15-35.
- X. Cui, J. S. Charles & T. Potok. (2013). GPU enhanced parallel computing for large scale data clustering. Journal of Future Generation Computer Systems, 29(7), 1736-1741. https://doi.org/10.1016/j.future.2012.07.009
- G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira & L. Rocha. (2013). G-dbscan: A gpu accelerated algorithm for density based clustering. Journal of Procedia Computer Science, 18, 369-378. https://doi.org/10.1016/j.procs.2013.05.200