DOI QR코드

DOI QR Code

The Characteristics of Growth and Active Compounds of Angelica gigas Nakai Population in Mt. Jeombong

점봉산 참당귀 자생지의 생장 및 유용성분 특성

  • 박윤미 (국립산림과학원 산림약용자원연구소) ;
  • 정대희 (국립산림과학원 산림약용자원연구소) ;
  • 심수진 (국립산림과학원 산림약용자원연구소) ;
  • 김나현 (국립산림과학원 산림약용자원연구소) ;
  • 박홍우 (국립산림과학원 산림약용자원연구소) ;
  • 전권석 (국립산림과학원 산림약용자원연구소)
  • Received : 2018.10.02
  • Accepted : 2019.01.02
  • Published : 2019.02.28

Abstract

This study was carried out to investigate characteristics of growth and active compounds of Angelica gigas population distributed in Mt. Jeombong. Quadrates were established in native area to harvest root part of Angelica gigas and analyze soil properties in September and October 2017. It was found that Angelica gigas populations were collected above the altitude 758 m near the valley covered with Fraxinus mandshurica and Acer pictum, and so on. In case of soil nutrient, soil organic matter, available phosphorous, and total nitrogen ranged 5.8-25.2%, 23.0-67.9 mg/kg and 0.3-1.3% respectively. Also, the Fresh weight of root ranged 28.8-65.3 g in September and 22.3-75.6 g in October. The content of active compounds ranged 2.7-4.7% in decursin and 2.9-4.5% decursinol angelate in October that was increased by 1% and 2.4% respectively compared with that in September. In the final analysis, there was positive correlation between fresh weight of root and exchangeable cation (natrium, calcium, magnesium). Also, there was positive correlation between active compounds and the content of water in root part of Angelica gigas.

점봉산 참당귀는 해발 750-965 m의 교목층은 들메나무, 고로쇠나무, 신갈나무가 분포하고, 아교목층에는 당단풍, 까치박달나무가 분포하는 계곡지로 유기물이 집적되기 쉬운 다습한 지형에 자생하였다. 참당귀 군락의 토양 분석 결과 토양pH는 4.9-6.0으로 우리나라 산림토양의 평균과 매우 유사한 값을 보였으며, 토양 양분의 지표인 유기물함량, 전질소 양이온치환용량, 치환성 Ca, K, Mg, Na의 함량은 산림토양의 평균보다 비교적 높은 값을 보였다. 생장 특성으로는 9월 말에는 뿌리 생장이 평균47.9 g이나 10월 말에는 33.8 g으로 29% 감소하였으며, 유용 성분은 반대로 10월말에 decursin 3.8%, decursinol angelate 3.6%로 각각 26%, 67% 증가하였다. 참당귀 자생지 8개 집단의 생장 특성 및 유용성분 함량과 토양특성 간의 상관분석을 수행한 결과 뿌리 생장은 치환성 양이온인 K, Mg, Na과 높은 양의 상관관계를 보였고, 유용성분은 뿌리의 수분함량과 높은 음의 상관관계를 보였다.

Keywords

JOSMBA_2019_v32n1_9_f0001.png 이미지

Fig. 1. The comparison of growth characteristics in Angelica gigas Nakai populations in Mt. Jeombong by harvest time.

Table 1. Topographic and stand structural descriptions of Angelica gigas Nakai populations in Mt. Jeombong, Gangwon-do, Korea. The sites 1-3 were surveyed in September 25

JOSMBA_2019_v32n1_9_t0001.png 이미지

Table 2. Topographic and stand structural descriptions of Angelica gigas Nakai populations in Mt. Jeombong, Gangwondo, Korea. The Sites 4-8 were surveyed in October 25 (Second investigation)

JOSMBA_2019_v32n1_9_t0002.png 이미지

Table 3. Edaphic characteristics of Angelica gigas Nakai populations in Mt. Jeombong, Gangwon-do, Korea

JOSMBA_2019_v32n1_9_t0003.png 이미지

Table 4. The content of exchangeable cation of Angelica gigas Nakai populations in Mt. Jeombong, Gangwon-do, Korea

JOSMBA_2019_v32n1_9_t0004.png 이미지

Table 5. Morphological characteristics and dry weight (DW) of Angelica gigas Nakai populations in Mt. Jeombong, Gangwon-do, Korea in September 25

JOSMBA_2019_v32n1_9_t0005.png 이미지

Table 6. Morphological characteristics and dry weight (DW) of Angelica gigas Nakai populations in Mt. Jeombong, Gangwon-do, Korea in October 25

JOSMBA_2019_v32n1_9_t0006.png 이미지

Table 7. Active compounds in root extracts of Angelica gigas Nakai in Mt. Jeombong, Gangwon-do, Korea

JOSMBA_2019_v32n1_9_t0007.png 이미지

Table 8. Correlation coefficient between the root growth characteristics and edaphic characteristics in Angelica gigas Nakai habitat

JOSMBA_2019_v32n1_9_t0008.png 이미지

Table 9. Correlation coefficient between the edaphic characteristics and active compounds in Angelica gigas Nakai habitat

JOSMBA_2019_v32n1_9_t0009.png 이미지

References

  1. Abrahamson, W.G. and M.D. Gadgil. 1973. Growth form and reproductive effort in goldenrods (Solidago, Compositae). American Naturalist 107:651-661. https://doi.org/10.1086/282864
  2. Ahn, S.D., C.Y. Yu and J.S. Seo. 1994. Effect of temperature and day length on growth and bolting of Angelica gigas Nakai. Korean J. Medicinal Crop Sci. 2(1):20-25 (in Korean).
  3. Chapin, F.S. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11:233-260. https://doi.org/10.1146/annurev.es.11.110180.001313
  4. Choo, B.K., Y.M. Ji, B.C. Moon, A.Y. Lee, J.M. Chun, T.S. Yoon and H.K. Kim. 2009. A study on environment characteristics of the Angelica gigas Nakai population. J. Korean Env. Res. Tech. 12(1):92-100 (in Korean).
  5. Cho, N.J., W.H. Lee, K.K. Kim and S.H. Han. 2017. Investigation of the antioxidant effect of Angelicae Radix from Korea, China and Japan. The Society of Pathology in Korean Medicine 6:182-187 (in Korean).
  6. Choi, J.W., J.H. Lee, W.B. Kim, C.K. Kim, H.K. Jung, Y.P. Hong and J.G. Kim. 2017. Changes in the quality and physiological activity of Angelica acutiloba leaves in various packaging materials during storage. Korea J. Plant Res. 30(1):29-37 (in Korean). https://doi.org/10.7732/KJPR.2016.30.1.029
  7. Coˆte', B., I. O’Halloran, W.H. Hendershot and H. Spankie. 1995. Possible interference of fertilization in the natural recovery of a declining sugar maple stand in southern Quebec. Plant Soil 168-169:471-480. https://doi.org/10.1007/BF00029359
  8. Jeong, J.H., K.S. Koo, C.H. Lee and C.S. Kim. 2002. Physcichemical properties of Korean forest soils by regions. Jour. Korean For. Soc. 91(6): 694-700 (in Korean).
  9. Kephart, S.R. and C. Paladino. 1997. Demographic change and microhabitat variability in grassland endemic, Silene douglasil var. oraria (Caryophyllaceae). American Journal of Botany 84:179-189. https://doi.org/10.2307/2446079
  10. Kim, C.M., M.G. Shin, G.S. Lee and D.K. Ahn. 1998. Wanyeok Jungyakdaesajeon. Jungdam publishing Co., Seoul, Korea. 3:1159-1168.
  11. Kim, J.H. 2003. The analysis of forest successional trend by species replacement model in the natural forest. Forest Bioenergy 22(3):1-10.
  12. Kim, J.Y., Y.D. Yoon, J.M. Ahn, J.S. Kang, S.K. Park and K. Lee. 2007. Angelan isolated from Angelica gigas Nakai induces dendritic cell maturation through toll-like receptor 4. Int. Immunopharmacology 7:78-87. https://doi.org/10.1016/j.intimp.2006.08.017
  13. Kim, S.A., H.K. Oh, J.Y. Kim, J.W. Hong and S.I. Cho. 2011. A review of pharmacological effects of Angelica gigas, Angelica sinensis, Angelica acutiloba and their bioactive compounds. J. Korean Oriental Med. 32(4):1-24 (in Korean).
  14. Konen, M. E., P. M. Jacobs, C. L. Burras, B. J. Talaga and J.A. Mason. 2002. Equations for predicting soil organic carbon using loss-on-ignition for north central U.S. Soil Science SCI. SOC. AM. J. 66:1878-1881. https://doi.org/10.2136/sssaj2002.1878
  15. Kuo, S. 1996. Phosphorus: In Sparks, D.L. (ed), Methods of Soil Analysis, Part 3: Chemical Methods. Soil Science Society of America Book Series Number 5. American Society of Agronomy, Madison, WI (USA). p. 1390.
  16. Munzbergova, Z. 2005. Determinants of species rarity: population growth rates of species sharing the same habitat. American Journal of Botany 92:1987-1994. https://doi.org/10.3732/ajb.92.12.1987
  17. Nadeau, I. and A. Olivier. 2003. The biology and forest cultivation of American ginseng (Panax quinquefolius L.) in Canada. Can J. Plant Sci. 83:877-891. https://doi.org/10.4141/P02-092
  18. Nam, H.I. and T.H. Baik. 2016. Inhibitory Effects of Angelica gigas Nakai on Ulcerative Colitis in DSS-induced ICR Nice. J. Physiol & Pathol Korean Med. 30(6):439-446 (in Korean). https://doi.org/10.15188/kjopp.2016.12.30.6.439
  19. Nam, H.H., D.W. Choi, K.U. Kim, O.H. Kwon and B.S. Choi. 1999. Growth analysis of Angelica gigas Nakai affected by cultivation methods. Korean J. Medicinal Crop Sci. 7(3): 218-228 (in Korean).
  20. Ouimet, R. and C. Camire'. 1995. Foliar deficiencies of sugar maple stands associated with soil cation imbalances in the Quebec Appalachians. Can J. Soil Sci. 75:169-175. https://doi.org/10.4141/cjss95-024
  21. Park, M.J., S.J. Kang and A.J. Kim. 2009. Hypoglycemic effect of Angelica gigas Nakai extract in streptozotocin-indiced diabetic rats. Korean J. Food & Nutr. 22(2):246-251 (in Korean).
  22. Seong, N.S., S.W. Lee, K.S. Kim and S.T. Kim. 1993. Environmental variation of decursin content in Angelica gigas. Korean J. Crop Sci. 38(1):60-65 (in Korean).
  23. Sparks, D.L. 1995. Environmental soil chemistry. Academic Press, San Diego, USA.
  24. Sumner, M.E. and W.P. Miller. 1996. Cation exchange capacity and exchange coefficients: In D.L. Sparks (ed). Methods of Soil Analysis. Part 3: chemical methods. Soil Science Society of America Book Series No. 5, 3rd edn., Soil Science Society of America, Madison. WI (USA). pp. 1201-1229.
  25. Van der, V.M. 1998. An inventory of wild-harvested plants in the Otter Creek wilderness area of the Monongahela National Forest, West Virginia. M.Sc. Thesis, The College of Agriculture and Forestry, West Virginia University, Morgantown, West Virginia (USA).
  26. Wan, Y.Q., Y.X. Liu, L. Guo and X.F. Wan. 2007. Determination of trace elements in danggui blood supplementing decoction by ICP-AES. Mol. Cancer Ther. 27:160-164.
  27. Yim, D., R.P. Singh, C. Agarwal, S. Lee, H. Chi and R. Agarwal. 2005. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res. 65:1035-44.
  28. Yoon, M.Y., Y.S. Kim, G.J. Choi, K.S. Jang, Y.H. Choi, B.J. Cha and J.C. Kim. 2011. Antifungal activity of decursinol angelate isolated from Angelica gigas roots against Puccinia recondite. Res. Plant Dis. 17(1):21-31 (in Korean).
  29. Yu, H.S., C.H. Park, C.G. Park, Y.G. Kim, H.W. Park and N.S. Seong. 2004. Growth characteristics and yield of the three species of genus Angelica. Korean J. Medicinal Crop Sci. 12:43-46 (in Korean).
  30. Yu, H.S., J.K. Bang, Y.G. Kim, N.S. Seong, B.H. Lee and J.S. Jo. 2000. Effect of root head diameter of seedling on growth and bolting response in Angelica gigas Nakai. Korean J. Medicinal Crop Sci. 8(3):283-289 (in Korean).