DOI QR코드

DOI QR Code

Heavy Metals Uptake Capability and Growth of Fifteen Compositae Plants for Phytoremediation

식물환경복원 소재선발을 위한 국화과 15종의 생육 및 중금속 축적능 분석

  • Kwon, Hyuk Joon (National Institute of Biological Resources) ;
  • Lee, Cheol Hee (Major in Horticulture, School of Applied Plant Science & Biotechnology, Chungbuk National University) ;
  • Kim, Soo-Young (National Institute of Biological Resources)
  • Received : 2018.09.03
  • Accepted : 2018.11.16
  • Published : 2019.02.28

Abstract

This study was performed to select the effective plant for phytoremediation of heavy metal contaminated areas. After cultivation of fifteen Compositae plants on soil contaminated with heavy metals for 8 weeks, the growth response and accumulation ability of each parts for heavy metal, such as arsenic, cadmium, copper, lead, and zinc were analyzed. Except Adiantum capillus-veneris, growth of Aster incisus, Coreopsis drumondii), Dendranthema indicum, Saussurea pulchella were relatively fine. Arsenic accumulation ability was the highest by Artemisia gmelini ($25.52mg{\cdot}kg^{-1}$ DW) in underground part, and D. sichotense ($3.35mg{\cdot}kg^{-1}$) in aerial part. Cadmium was the highest by Aster magnus ($2.50mg{\cdot}kg^{-1}$) in aerial part. Aerial and underground part of S. pulchella showed the highest copper accumulation (24.29, $99.92mg{\cdot}kg^{-1}$). In lead, 1.43 (A. magnus)${\sim}5.00mg{\cdot}kg^{-1}$ (S. deltoides) were accumulated in aerial part among fifteen Compositae plants. Aster hayatae ($140.09mg{\cdot}kg^{-1}$), Aster yomena ($109.07mg{\cdot}kg^{-1}$), A. magnus ($100.21mg{\cdot}kg^{-1}$) are absorbed more than $100mg{\cdot}kg^{-1}$ of Zinc. Therefore, they are considered to be phytoremediation material of zinc contaminated areas.

본 연구는 중금속 오염지역의 토양정화에 적합한 식물을 선발하기 위해 국화과 15종을 중금속으로 오염된 토양에 8주 동안 재배한 다음 생육반응과 부위별 비소, 카드뮴, 구리, 납, 아연 등의 중금속의 축적능을 분석하였다. 톱풀을 제외한 가새쑥부쟁이, 금계국, 감국, 각시취 등의 생육은 비교적 양호하였다. 비소 축적능은 더위지기 지하부($25.52mg{\cdot}kg^{-1}$)에서 가장 높았고 지상부는 바위구절초($3.35mg{\cdot}kg^{-1}$)가 가장 우수하였다. 카드뮴은 왕갯쑥부쟁이 지상부($2.50mg{\cdot}kg^{-1}$)에서 가장 높았다. 구리 축적능은 지상부와 지하부 모두 각시취(24.29, $99.92mg{\cdot}kg^{-1}$)가 가장 높은 경향을 보였다. 국화과 15종의 지상부는 1.43(왕갯쑥부쟁이)${\sim}5.00mg{\cdot}kg^{-1}$(수리취)의 납이 축적되었다. 눈갯쑥부쟁이($140.09mg{\cdot}kg^{-1}$), 쑥부쟁이($109.07mg{\cdot}kg^{-1}$), 왕갯쑥부쟁이($100.21mg{\cdot}kg^{-1}$) 등의 아연 축적능은 $100mg{\cdot}kg^{-1}$ 이상으로 아연 오염 지역의 식물상 정화 기법 소재로 활용이 가능할 것으로 생각된다.

Keywords

Table 1. Heavy metal contents of soil near the smelter in 2009

JOSMBA_2019_v32n1_1_t0001.png 이미지

Table 2. Growth characteristics of fifteen Compositae plants measured just before planting into paddy soil contaminated with heavy metals

JOSMBA_2019_v32n1_1_t0002.png 이미지

Table 3. Growth characteristics of fifteen Compositae plants cultivated in paddy soil contaminated with heavy metals for 8 weeks

JOSMBA_2019_v32n1_1_t0003.png 이미지

Table 4. Arsenic, cadmium and copper accumulation contained in fifteen Compositae plants cultivated in soil contaminated with heavy metals for 8 weeks

JOSMBA_2019_v32n1_1_t0004.png 이미지

Table 5. Lead and zinc accumulation contained in fifteen Compositae plants cultivated in soil contaminated with heavy metals for 8 weeks

JOSMBA_2019_v32n1_1_t0005.png 이미지

References

  1. Allaway, W.H. 1968. Agronomic controls over the environmental cycling of trace elements. Adv. Agro. 20:235-274. https://doi.org/10.1016/S0065-2113(08)60858-5
  2. Baker, A.J.M. and R.R. Brooks 1989. Terrestrial higher plants which hyperaccumulate metallic elements - A review of their distribution, ecology and phytochemistry. Biorecovery 1:81-126.
  3. Brown, S.L., R.L. Chaney, J.S. Angle and A.J.M. Baker. 1999. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zunc and cadmium contaminated soil. J. Environ. Qual. 23:1151-1157. https://doi.org/10.2134/jeq1994.00472425002300060004x
  4. Chehregani, A and B.E. Malayeri. 2007. Removal of heavy metals by native accumulator plants. Int. J. Agri. Biol. 9: 462-465.
  5. Choi, M.K. and M.H. Chiang, 2003. Physiological and biochemical responses, and heavy metal accumulation of Artemisia princeps and Helianthus annuus in the abandoned zinc mine area for phytoremediation. Korean J. Hort. Sci. Technol. 21:451-456.
  6. Chung, J.C. and M.C. Lee. 1997. Environmental problems of abandoned mining sites and their recovery. J. KORRA. 5:71-85.
  7. Cunningham, S.D. and D.W. Ow. 1996. Promises and prospects of phytoremediation. Plant Physiol. 110:712-719.
  8. Cui, Y.J., Y.G. Zhu, R.H. Zhai, D.Y. Chen, Y.Z. Huang, Y. Qiu and J.Z. Liang. 2004. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 30:1-18. https://doi.org/10.1016/S0160-4120(03)00139-9
  9. Fitz, W.J. and W.W. Wenzel. 2002. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J. Biotechnol. 99:259-278. https://doi.org/10.1016/S0168-1656(02)00218-3
  10. Gang, J.W. 2002 Stabilization of heavy metal contaminated soils in military site using phosphate. Department of Environmental Engineering, M.S. Thesis, Kwangwoon Univ., Korea.
  11. Haechun, E.T.S. 2011. Development of customized enganced phytoremediation using metal accumulating plants and mPGPR. Korean Ministry Environ.
  12. Han, J.H., H.J. Kwon and C.H. Lee. 2014. Effect of arsenic types in soil on growth and arsenic accumulation of Pteris multifida. Korean J. Pant Res. 27:344-353. https://doi.org/10.7732/kjpr.2014.27.4.344
  13. Jeong, S.K., T.S. Kim and H.S. Moon. 2010. Characteristics of heavy metals uptake by plants: based on plant species, types of heavy metals, and initial metal concentration in soil. Korean Soc. Soil Groundwater Environ. 15:61-68.
  14. Ju, Y.K., H.J. Kwon, J.S. Cho, S.L. Shin, T.S. Kim, S.B. Choi and C.H. Lee. 2011. Growth and heavy metal absorption capacity of Aster koraiensis Nakai according to types of land use. Korean J. Pant Res. 24:48-54. https://doi.org/10.7732/kjpr.2011.24.1.048
  15. Jung, K.C., B.J. Kim and S.G. Han. 1993. Survey on heavy metals contents in native plant near old zinc-mining sites. Korean J. Environ. Agric. 12:105-111.
  16. Jung, M.C., J.S. Ahn and H.T. Chon. 2001. Environmental contamination and sequential extraction of trace elements from mine wastes around various metalliferous mines in Korea. Geosystem. Eng. 4:50-60. https://doi.org/10.1080/12269328.2001.10541168
  17. Kang, B.H., S.I. Shim and S.G. Lee. 1996. Application of weed species as the diagnostic indicator plants of environment pollution. Korean J. Environ. Agric. 15:46-69.
  18. Kang, M.H., Y.H. Lee and J.W. Lee. 2003. Effects of growth responses on heavy metal early growing period in Cosmos bipinnatus Cav. And Helianthus annuus L.: the potential for phytoremediation. J. Korean Soc. People Plants Environ. 6:1-6.
  19. Kim, J.G. and S.H. Lee, 1999. Phytoremediation. Korean J. Environ. Agric. 29:58-88.
  20. Kim, J.G. , S.K. Lim, S.H. Lee, Y.M. Yoon, C.H Lee, and C.Y. Jeong. 1999. Evaluation of heavy metal pollution and plant survey around inactive and abandoned mining areas for phytoremediation of heavy metal contaminated soils. Korean J. Environ. Agric. 18:28-34.
  21. Korean Ministry of Environment (KME). 2009. Korean ministry of environment standard. Korean Ministry Environ.
  22. Krishnaraj, S., M.A. Dixon and P.K. Saxena. 2000. Scented geraniums: a model system for phytoremediation. Korean J. Plant Tiss. Cult. 27:325-337.
  23. Kumino, T., K. Saeki, K. Nagaoka, H. Oyaizu and S. Matsumoto. 2001. Characterization of copper-resistant bacterial community in rhizosphere of highly coppercontaminated soil. Eur. J. Soil Biol. 37:95-102. https://doi.org/10.1016/S1164-5563(01)01070-6
  24. Kwon, H.J., J.S. Cho and C.H. Lee. 2014. Screening for heavy metals accumulation ability of twelve Pteridophyta species at soil contaminated with heavy metals. J. Kor. People Plants Environ. 17:203-210. https://doi.org/10.11628/ksppe.2014.17.3.203
  25. Kwon, H.J., J.S. Cho and C.H. Lee. 2015. Effect of arsenic concentrations in soil on growth and arsenic accumulation of Pteris multifida. J. Korean People Plants Environ. 18:273-280. https://doi.org/10.11628/ksppe.2015.18.4.273
  26. Kwon, H.J., S.A. Jeong, S.L. Shin and C.H. Lee. 2017. Effect of mixed planting ratios of Pteris multifida Poir. and Artemisia princeps Pamp. on phytoremediation of heavy metals contaminated soil. Korean J. Pant Res. 30:160-166. https://doi.org/10.7732/kjpr.2017.30.2.160
  27. Lee, B.K., I.H. Koh and H.A. Kim. 2005. The partitioning characteristics of heavy metals in soils of Ulsan by sequential extraction procedures. Korean Soc. Environ. Eng. 27:25-35.
  28. Lee, Y.N. 2010. New Flora of Korea II. Kyo-hak Publishing Co., Seoul, Korea. pp. 273-387.
  29. Muller, H.W., F. Oort, B. Gelie and M. Balabane. 2000. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental pollution 109: 231-238. https://doi.org/10.1016/S0269-7491(99)00262-6
  30. Nouri, J., B. Lorestani, N. Yousefi, N. Khorasani, A.H. Hasani, F. Seif and M. Cheraghi. 2011. Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environ. Earth Sci. 62:639-644. https://doi.org/10.1007/s12665-010-0553-z
  31. Oh, W.K, J.Y. Lee and H.J. Kim. 2006. A feasibility study on Pteris multifida pior. for the phytoremediation of arsenic contaminated mine soil. Korean Soc. Environ. Eng. pp. 515-519.
  32. Park, E.H., Y. Choi, S.G. Lee and M.H. Chiang. 2003. Effect of soil conditioners for contaminated soil of abandoned zinc mine area on growth of Chrysanthemum zawadskii and Caryopteris incana (Thunb.) Miq. J. Bio-Environ. Control 12:245-251.
  33. Salt, D.E., M. Blaylock, N.P.B.A. Kumar, V. Dushenkov, B.D. Ensley, I. Chet and I, Raskin. 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468-474.
  34. Von Endt, D.W., P.C. Keearney and D.D. Kaufman. 1968. Degradation of monosodium methanearsonic acid by soil microorganisms. J. Agric. Food Chem. 16:17-20. https://doi.org/10.1021/jf60155a017
  35. Wenzel, W.W. and F. Jockwer. 1999. Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps, Environ. Poll. 104:145-155. https://doi.org/10.1016/S0269-7491(98)00139-0
  36. Wild, A. 1993. Soils and the Environment: An Introduction. Cambridge Univ. Press, Cambridge, UK. pp. 189-210.
  37. Yun, S.W., H.G. Jin, S.I. Kang, S.J. Choi, Y.C. Lim and C. Yu. 2010. A comparison on the effect of soil improvement methods for the remediation of heavy metal contaminated farm land soil. Korean Geotech. Soc. 26:59-70.

Cited by

  1. 제설제 피해지에서 토양개량제 처리에 따른 구절초의 생육특성 비교 vol.30, pp.3, 2019, https://doi.org/10.5322/jesi.2021.30.3.235