DOI QR코드

DOI QR Code

An analysis of solution methods by fifth grade students about 'reverse fraction problems'

'역 분수 문제'에 대한 5학년 학생들의 해결 방법 분석

  • Pang, JeongSuk (Department of Elementary Education (Mathematics Education), Korea National University of Education) ;
  • Cho, SeonMi (Graduate School of Korea National University of Education)
  • Received : 2018.10.18
  • Accepted : 2018.12.20
  • Published : 2019.02.28

Abstract

As the importance of algebraic thinking in elementary school has been emphasized, the links between fraction knowledge and algebraic thinking have been highlighted. In this study, we analyzed the solution methods and characteristics of thinking by fifth graders who have not yet learned fraction division when they solved 'reverse fraction problems' (Pearn & Stephens, 2018). In doing so, the contexts of problems were extended from the prior study to include the following cases: (a) the partial quantity with a natural number is discrete or continuous; (b) the partial quantity is a natural number or a fraction; (c) the equivalent fraction of partial quantity is a proper fraction or an improper fraction; and (d) the diagram is presented or not. The analytic framework was elaborated to look closely at students' solution methods according to the different contexts of problems. The most prevalent method students used was a multiplicative method by which students divided the partial quantity by the numerator of the given fraction and then multiplied it by the denominator. Some students were able to use a multiplicative method regardless of the given problem contexts. The results of this study showed that students were able to understand equivalence, transform using equivalence, and use generalizable methods. This study is expected to highlight the close connection between fraction and algebraic thinking, and to suggest implications for developing algebraic thinking when to deal with fraction operations.

Keywords

SHGHBU_2019_v58n1_1_f0001.png 이미지

[그림 1] ‘역 분수 문제’에 대한 학생들의 해결 방법의 예 (Pearn & Stephens, 2018, p. 243) [Fig. 1] An example of students’ solution methods about Reverse Fraction Problems

SHGHBU_2019_v58n1_1_f0002.png 이미지

[그림 2] ‘역 분수 문제’와 관련된 우리나라 교과서 문제의 예(교육부, 2018, p. 114) [Fig. 2] An example of problems in the mathematics textbooks related to Reverse Fraction Problems

SHGHBU_2019_v58n1_1_f0003.png 이미지

[그림 3] 곱셈 방법의 예 [Fig. 3] An example of multiplicative methods

SHGHBU_2019_v58n1_1_f0004.png 이미지

[그림 4] 곱셈 방법의 다른 예 [Fig. 4] Another example of multiplicative methods

SHGHBU_2019_v58n1_1_f0005.png 이미지

[그림 5] 부분적 곱셈 방법의 예 [Fig. 5] An example of partially multiplicative methods

SHGHBU_2019_v58n1_1_f0006.png 이미지

[그림 6] 덧셈 방법의 예 [Fig. 6] An example of addictive methods

SHGHBU_2019_v58n1_1_f0007.png 이미지

[그림 7] 그림 방법의 예 ① [Fig. 7] The first example of visual methods

SHGHBU_2019_v58n1_1_f0008.png 이미지

[그림 8] 그림 방법의 예 ② [Fig. 8] The second example of visual methods

SHGHBU_2019_v58n1_1_f0009.png 이미지

[그림 9] 그림 방법의 예 ③ [Fig. 9] The third example of visual methods

SHGHBU_2019_v58n1_1_f0010.png 이미지

[그림 10] 그림 방법의 예 ④ [Fig. 10] The fourth example of visual methods

SHGHBU_2019_v58n1_1_f0011.png 이미지

[그림 11] 부분에 해당하는 양이 이산량인지 연속량인지에 따른 정답률 [Fig. 11] A percentage of correct answers according to the problem contexts in which the partial quantity with a natural number is discrete or continuous

SHGHBU_2019_v58n1_1_f0012.png 이미지

[그림 12] 부분에 해당하는 양이 자연수인지 분수인지에 따른 정답률 [Fig. 12] A percentage of correct answers according to the problem contexts in which the partial quantity is a natural number or a fraction

SHGHBU_2019_v58n1_1_f0013.png 이미지

[그림 13] 부분에 해당하는 양이 분수인 맥락에서 곱셈 방법을 사용하여 문제를 해결한 예 [Fig. 13] An example of multiplicative methods for the problems in which the partial quantity with a fraction is continuous

SHGHBU_2019_v58n1_1_f0014.png 이미지

[그림 14] 부분에 해당하는 양을 나타내는 분수가 진분수인지 가분수인지에 따른 정답률 [Fig. 14] A percentage of correct answers according to the problem contexts in which the equivalent fraction of partial quantity is a proper fraction or an improper fraction

SHGHBU_2019_v58n1_1_f0015.png 이미지

[그림 15] 그림 제시 여부에 따른 정답률 [Fig. 15] A percentage of correct answers according to the problem contexts in which the diagram is presented or not

SHGHBU_2019_v58n1_1_f0016.png 이미지

[그림 16] 형식화 방법의 예 [Fig 16] An example of advanced multiplicative methods

[표 1] Pearn과 Stephens(2018)에서 제시한 ‘역 분수 문제’ [Table 1] Reverse Fraction Problems presented in Pearn and Stephens (2018)

SHGHBU_2019_v58n1_1_t0001.png 이미지

[표 2] 본 연구에서 사용한 ‘역 분수 문제’ [Table 2] Reverse Fraction Problems presented in this study

SHGHBU_2019_v58n1_1_t0002.png 이미지

[표 3] ‘역 분수 문제’에 대한 학생들의 해결 방법 설명 및 예 [Table 3] Explanations and examples of students’ solution methods used for Reverse Fraction Problems

SHGHBU_2019_v58n1_1_t0003.png 이미지

[표 4] 학생들이 사용한 문제 해결 방법 (N=46) [Table 4] Solution methods used for Reverse Fraction Problems (N=46)

SHGHBU_2019_v58n1_1_t0004.png 이미지

[표 5] 문제 맥락별 정답률 (N=46) [Table 5] A percentage of correct answers according to the problem contexts

SHGHBU_2019_v58n1_1_t0005.png 이미지

[표 6] 이산량, 자연수 문제 맥락에서 학생들이 사용한 해결 방법 [Table 6] Students’ solution methods for the problems in which the partial quantity with a natural number is discrete

SHGHBU_2019_v58n1_1_t0006.png 이미지

[표 7] 연속량, 자연수 문제 맥락에서 학생들이 사용한 해결 방법 [Table 7] Students’ solution methods for the problems in which the partial quantity with a natural number is continuous

SHGHBU_2019_v58n1_1_t0007.png 이미지

[표 8] 연속량, 분수 문제 맥락에서 학생들이 사용한 해결 방법 [Table 8] Students’ solution methods for the problems in which the partial quantity with a fraction is continuous

SHGHBU_2019_v58n1_1_t0008.png 이미지

References

  1. 교육부 (2018). 수학 6-1. 서울: 천재교육.
  2. 박현재, 김구연 (2018). 초등학생의 분수와 분수 연산에 대한 이해 양상. 수학교육 57(4). 453-475.
  3. 방정숙, 최지영 (2011). 범자연수와 연산에 관한 수학 교과서 분석: 일반화된 산술로서의 대수 관점을 중심으로. 수학교육 50(1), 41-59.
  4. 우정호, 김성준 (2007). 대수의 사고 요소 분석 및 학습: 지도 방향 탐색. 수학교육학연구 17(4), 453-475.
  5. 이혜민, 신인선(2011). 산술과 대수적 사고의 연결을 위한 분수 scheme에 관한 사례 연구. 초등수학교육 14(3), 261-275.
  6. Barnett-Clarke, C., Fisher, W., Marks, R., & Ross, S. (2017). 유리수의 필수 이해 (방정숙, 송상헌, 김동원, 이지영, 정유경, 김정원 공역). 서울: (주)교우. (원저 2011년 출판)
  7. Blanton, M., Levi, L., Crites, T., & Dougherty, B. J. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3-5. Reston, VA: National Council of Teachers of Mathematics.
  8. Carraher, D. W. & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 669-705). Reston, VA: National Council of Teachers of Mathematics.
  9. Cooper, T. & Warren, E. (2011). Years 2 to 6 students' ability to generalise: Models, representations and theory for teaching and learning. In J. Cai & E. Kunth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 187-214). New York: Springer.
  10. Empson, S. B., Levi, L., & Carpenter, T. P. (2011). The algebraic nature of fractions: Developing relational thinking in elementary school. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 277-301). New York: Springer.
  11. Jacobs, V. R., Franke, M. L., Carpenter, T. P., Levi, L., & Battey, D. (2007). Professional development focused on children's algebraic reasoning in elementary school. Journal for Research in Mathematics Education 38(3), 258-288.
  12. Kieran, C., Pang. J., Schifter, D., & Ng, S. F. (2016). Early algebra: Research into its nature, its learning, its teaching. New York: Springer Open eBooks.
  13. Lampert, M. (2016). 가르치는 것은 왜 그렇게 어려울까? (방정숙, 권민성 공역). 서울: 경문사. (원저 2001년 출판)
  14. Lee, M. Y. & Hackenberg, A. J. (2014). Relationships between fractional knowledge and algebraic reasoning: The case of Willa. International Journal of Science and Mathematics Education 12(4), 975-1000. https://doi.org/10.1007/s10763-013-9442-8
  15. Moss, J. & McNab, S. L. (2011). An approach to geometric and numeric patterning that fosters second grade students'reasoning and generalizing about functions and co-variation. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 277-301). New York: Springer.
  16. National Council of Teachers of Mathematics (2008). 학교수학을 위한 원리와 규준 (류희찬, 조완영, 이경화, 나귀수, 김남균, 방정숙 공역). 서울: 경문사. (원저 2000년 출판)
  17. National Mathematics Advisory Panel (2008). Foundations for success: The final report of the national mathematics advisory panel. Washington, DC: U.S. Department of Education.
  18. Pearn, C., Pierce, R., & Stephens, M. (2017). In B. Kaur, W. K. Ho, T. L. Toh, & B. H. Choy (Eds.), Proceedings of the 41st Conference of the International Group for the Psychology of Mathematics Education Vol. 4, (pp. 1-8). Singapore: PME.
  19. Pearn, C. & Stephens, M. (2016). Competence with fractions in fifth or sixth grade as a unique predictor of algebraic thinking? In B. White, M. Chinnappan, & S. Trenholm (Eds.), Proceeding of the 39th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 519-526). Adelaide: MERGA.
  20. Pearn, C. & Stephens, M. (2018). Generalizing fractional structures: A critical precursor to algebraic thinking. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds (pp. 237-260). Switzerland: Springer.
  21. Siegler, R., Duncan, G., Davis-Kean, P., Duckworth, K., Claessens, A., Engel, M., & Chen, M. (2012). Early predictors of high school mathematics achievement. Psychological Science 23(10), 691-697. https://doi.org/10.1177/0956797612440101
  22. Stephens, M. & Ribeiro, A. (2012). Working towards algebra: The importance of relational thinking. Revista Latinoamericano de Investigacion en Matematica Educativa 15(3), 373-402.