DOI QR코드

DOI QR Code

Determination of Siderophore from Bacillus Mojavensis Using Liquid Chromatography quadrupole Time-of-flight Tandem Mass Spectrometry

액체크로마토그래피-사중극 비행시간형 탠덤질량분석기를 이용한 Bacillus mojavensis 균주 속 사이드로포어 규명

  • Cheon, Hae In (College of Pharmacy, Kyungsung University) ;
  • Yeo, Mi Seon (College of Pharmacy, Kyungsung University) ;
  • Kim, Kang Min (Department of Pharmaceutical Science and Technology, Kyungsung University) ;
  • Kang, Jae Seon (College of Pharmacy, Kyungsung University) ;
  • Pyo, Jaesung (College of Pharmacy, Kyungsung University)
  • Received : 2018.08.07
  • Accepted : 2018.11.03
  • Published : 2019.02.28

Abstract

Recently, it has been reported that Bacillus mojavensis possesses antifungal properties and plant growth-promoting activities, which are similar to the characteristics of siderophore. In this study, the siderophore produced by B. mojavensis was assessed using a solid phase extraction (SPE) cartridge and liquid chromatography quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS). After B. mojavensis was incubated in phenol medium for 16 hr and lyophilized, the sample was dissolved in water and loaded to an SPE cartridge to remove interferences. The cartridge was washed with 5% methanol in water and eluted with 2% formic acid in methanol sequentially. The eluted solution was evaporated under a stream of nitrogen gas and reconstituted in methanol. The reconstituted sample was filtered, and $1{\mu}l$ of the sample was assessed using Q-TOF MS/MS. The mass spectrometer was operated using the positive electrospray ionization mode. Based on the mass spectrum and tandem mass spectrum, the siderophore produced by B. mojavensis was bacillibactin, one of the catechol types of siderophore with a molecular weight of 882.2556. This siderophore analysis could provide a justification for the study of B. mojavensis as a functional food and for pharmaceutical applications.

Bacillus mojavensis를 이용한 항진균성 및 식물 생장 촉진 활성이 최근 보고되었다. 이런 활성은 사이드로포어의 일반적 특성과 일치하여, 본 연구에서는 Bacillus mojavensis가 생산하는 사이드로포어를 고체상추출 카트리지와 액체크로마토그래피-사중극 비행시간형 탠덤 질량분석기를 이용하여 규명하였다. Bacillus mojavensis를 페놀 배지에서 16시간 동안 배양하고 동결 건조 시킨 후, 물에 용해시켜 고상추출 카트리지에 로딩하였다. 카트리지는 5% 메탄올로 세척하고 2% 포름산을 이용해 용출 시켰다. 용출액은 메탄올에 재용해 후 분석을 하였다. Bacillus mojavensis의 사이드로포어는 질량 스펙트럼의 결과를 바탕으로 882.2556의 분자량을 갖는 카테콜타입의 사이드로포어 중 하나인 bacillibactin으로 확인되었다. 이 사이드로포어 분석은 Bacillus 연구 및 기능성 식품 그리고 Bacillus mojavensis의 약학 응용 분야에 큰 기여를 할 것으로 예상된다.

Keywords

SMGHBM_2019_v29n2_198_f0001.png 이미지

Fig. 1. (A) The extracted ion chromatogram (EIC) as m/z 883.27 ion in positive ESI mode. (B) The mass spectral peaks of detection and extraction in 5.112 min. (C) Product ion mass spectra of sample obtained by Q-TOF-MS/MS in m/z 20-900.

Table 1. LC-Q TOF-MS/MS condition

SMGHBM_2019_v29n2_198_t0001.png 이미지

References

  1. Bais, H. P., Fall, R. and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307-319. https://doi.org/10.1104/pp.103.028712
  2. Dunlap, C. A. and Bowman, M. J. 2013. Schisler DA, Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: A biocontrol antagonist of Fusarium head blight. Biol. Control 64, 166-175. https://doi.org/10.1016/j.biocontrol.2012.11.002
  3. Emily, A. D., Jide, X., Alain, S. and Kenneth, N. R. 2006. Bcillibactin-Mediated iron transport in Bacillus subtilis. J. Am. Chem. Soc. 128, 22-23. https://doi.org/10.1021/ja055898c
  4. Gledill, M., McCormack, P., Ussher, S., Achterberg, E. P., Mantoura, R. F. C. and Worsfold, P. J. 2004. Production of siderophore type chelates by mixed bacterioplankton populations in nutrient enriched seawater incubations. Mar. Chem. 88, 75-83. https://doi.org/10.1016/j.marchem.2004.03.003
  5. Hayen, H. and Volmer, D. A. 2005. Rapid identification of siderophores by combined thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 19, 711-720. https://doi.org/10.1002/rcm.1837
  6. Hertlein, G., Muller, S., Garcia-Gonzalez, E., Poppinga, L., Sussmuth, R. D. and Genersch, E. 2014. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae. PLoS One 9, 1-12.
  7. Karla, D., K. and Hans J. V. 2008. Structural biology of bacterial iron uptake. BBA 1778, 1781-1804. https://doi.org/10.1016/j.bbamem.2007.07.026
  8. Kim, K. M., Liu, J., Go, Y. S. and Kang, J. S. 2015. Characterization of Bacillus mojavensis KJS-3 for the promotion of plant growth. J. Life Sci. 25, 910-916. https://doi.org/10.5352/JLS.2015.25.8.910
  9. Mukherjee, S., Das, P. and Sen, R. 2006. Towards commercial production of microbial surfactants. Trends Biotechnol. 24, 509-515. https://doi.org/10.1016/j.tibtech.2006.09.005
  10. Patel, A. K., Deshattiwar, M. K., Chaudhari, B. L. and Chincholkar, S. B. 2009. Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp. Bioresour. Technol. 100, 368-373. https://doi.org/10.1016/j.biortech.2008.05.008
  11. Pyo, J. S., Shrestha, S., Park, S. H. and Kang, J. S. 2014. Biological control of plant growth using the plant growth-promoting Rhizobacterium Bacillus mojavensis KJS-3. J. Life Sci. 24, 1308-1315. https://doi.org/10.5352/JLS.2014.24.12.1308
  12. Raggi, M. A., Sabbioni, C., Casamenti, G., Gerra, G., Calonghi, N. and Masotti, L. 1999. Determination of catecholamines in human plasma by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B Biomed. Sci. Appl. 730, 201-211. https://doi.org/10.1016/S0378-4347(99)00213-3
  13. Roberts, M. S., Nakumora, L. K. and Cohan, F. M. 1994. Bacillus mojavensis sp.Nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int. J. Syst. Bacteriol. 44, 256-264. https://doi.org/10.1099/00207713-44-2-256
  14. Silva-Stenicoa, M. E., Hansen Pachecoa, F. T., Mazza Rodriguesa, J. L., Carrilhob, E. and Mui Tsai, S. 2005. Growth and siderophore production of Xylella fastidiosa under ironlimited conditions. Microbiol. Res. 160, 429-436. https://doi.org/10.1016/j.micres.2005.03.007
  15. Woo, S. M. and Kim, S. D. 2008. Structural identification of siderophore AH18 from Bacillus subtilis AH18, a biocontrol agent of phytophthora blight disease in red-pepper. J. Microbiol. Biotechnol. 36, 326-335.
  16. Zloch, M., Thiem, D., Gadzala-Kopciuch, R. and Hrynkiewicz, K. 2016. Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to $Cd^{2+}$. Chemosphere 156, 312-325. https://doi.org/10.1016/j.chemosphere.2016.04.130