DOI QR코드

DOI QR Code

Protective Effects of Quercetin-3-O-glucuronide against 1-methyl-4-phenylpyridinium-induced Neurotoxicity

1-methyl-4-phenylpyridinium으로 유도된 신경 손상에 대한 quercetin-3-O-glucuronide의 보호 효과

  • Pariyar, Ramesh (Institute of Pharmaceutical Research and Development,College of Pharmacy, Wonkwang University) ;
  • Bastola, Tonking (Institute of Pharmaceutical Research and Development,College of Pharmacy, Wonkwang University) ;
  • Seo, Jungwon (Institute of Pharmaceutical Research and Development,College of Pharmacy, Wonkwang University)
  • Received : 2019.02.09
  • Accepted : 2019.02.21
  • Published : 2019.02.28

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disease that mainly affects motor system with clinical features such as bradykinesia, rigidity, tremor and abnormal posture. PD is characterized by the death of dopaminergic neurons in the substantia nigra pars compacta, which is associated with accumulation of oxidative stress and dysregulation of intracellular signaling pathway. Quercetin-3-O-glucuronide (Q3GA), a major metabolite of quercetin, has been reported to have neuroprotective effects. In this study, we examined the neuroprotective effect of Q3GA against 1-methyl-4-phenyl pyridinium ($MPP^+$)-induced neurotoxicity of PD and the underlying molecular mechanisms in SH-SY5Y cells. MTT and LDH assay showed that Q3GA significantly decreased $MPP^+$-induced cell death, which is accompanied by a reduction in poly (ADP-ribose) polymerase (PARP) cleavage. Furthermore, it attenuated $MPP^+$-induced intracellular reactive oxygen species (ROS) with the reduction of Bax/ Bcl-2 ratio. Moreover, Q3GA significantly increased the phosphorylation of Akt and cAMP response element binding protein (CREB), but it has no effects on the phosphorylation of extracellular signal-regulated kinase (ERK). Taken together, these results demonstrate that Q3GA significantly attenuates $MPP^+$-induced neurotoxicity through ROS reduction and Akt/CREB signaling pathway in SH-SY5Y cells. Our findings suggest that Q3GA might be one of the potential candidates for the prevention and/or treatment of PD.

파킨슨병은 운동완서, 근육경직, 진전 및 비정상적인 자세 등을 임상적 특징으로 하는 주로 운동 신경계에 영향을 주는 진행성 신경 퇴행성 질환이다. 파킨슨병은 산화 스트레스와 세포 내 신호 전달 경로의 조절 장애에 의한 뇌 흑색치밀부에서의 도파민성 신경세포의 사멸을 특징으로 한다. Quercetin의 주요 대사산물인 Quercetin-3-O-glucuronide (Q3GA)는 신경 보호 효과가 있는 것으로 보고 되어 왔다. 본 연구에서는 SH-SY5Y 세포에서 1-methyl-4-phenyl pyridinium ($MPP^+$)에 의해 유도된 신경 독성에 대한 Q3GA의 신경 보호 효과와 그 분자 조절 기전을 조사하였다. Q3GA는 $MPP^+$에 의해 유도된 세포 사멸을 유의적으로 감소시켰으며 PARP 절단을 감소시켰다. 또한, Bax/Bcl-2 비율의 감소와 함께 $MPP^+$에 의해 증가된 세포 내 ROS를 감소시켰다. Q3GA는 $MPP^+$에 의해 감소된 Akt와 CREB의 인산화를 유의적으로 회복시켰지만, ERK에는 영향을 미치지 않았다. 이 결과는 Q3GA가 ROS 생산 억제와 Akt/CREB 신호 전달 경로를 통해 $MPP^+$ 에 의해 유도된 신경 독성을 억제시킬 수 있음을 시사한다. 본 연구는 Q3GA가 파킨슨병에 대한 예방제 또는 치료제로 개발될 수 있는 가능성을 제시한다.

Keywords

SMGHBM_2019_v29n2_191_f0001.png 이미지

Fig. 1. Q3GA protectes SH-SY5Y cells against MPP+-induced cytotoxicity.

SMGHBM_2019_v29n2_191_f0002.png 이미지

Fig. 2. Q3GA suppresses MPP+-induced intracellular accumulation of ROS in SH-SY5Y cells.

SMGHBM_2019_v29n2_191_f0003.png 이미지

Fig. 3. Q3GA markedly attenuates MPP+ -induced PARP proteolysis and Bax/Bcl2 ratio.

SMGHBM_2019_v29n2_191_f0004.png 이미지

Fig. 4. MPP+ decreases Akt and CREB phosphorylation, whereas Q3GA reverses those effects.

References

  1. Baral, S., Pariyar, R., Kim, J., Lee, H. S. and Seo, J. 2017. Quercetin-3-O-glucuronide promotes the proliferation and migration of neural stem cells. Neurobiol. Aging 52, 39-52. https://doi.org/10.1016/j.neurobiolaging.2016.12.024
  2. Carlezon Jr, W. A., Duman, R. S. and Nestler, E. J. 2005. The many faces of CREB. Trends Neurosci. 28, 436-445. https://doi.org/10.1016/j.tins.2005.06.005
  3. Chun, H. S., Gibson, G. E., DeGiorgio, L. A., Zhang, H., Kidd, V. J. and Son, J. H. 2001. Dopaminergic cell death induced by $MPP^+$, oxidant and specific neurotoxicants shares the common molecular mechanism. J. Neurochem. 76, 1010-1021. https://doi.org/10.1046/j.1471-4159.2001.00096.x
  4. Comalada, M., Camuesco, D., Sierra, S., Ballester, I., Xaus, J., Galvez, J. and Zarzuelo, A. 2005. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kB pathway. Eur. J. Immunol. 35, 584-592. https://doi.org/10.1002/eji.200425778
  5. Costa, L. G., Garrick, J. M., Roque, P. J. and Pellacani, C. 2016. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid. Med. Cell. Longev. 2016, 2986796.
  6. Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M. E. 1997. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241. https://doi.org/10.1016/S0092-8674(00)80405-5
  7. Du, K. and Montminy, M. 1998. CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 273, 32377-32379. https://doi.org/10.1074/jbc.273.49.32377
  8. Fearnley, J. M. and Lees, A. J. 1991. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114, 2283-2301. https://doi.org/10.1093/brain/114.5.2283
  9. Fernandes-Alnemri, T., Litwack, G. and Alnemri, E. S. 1994. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J. Biol. Chem. 269, 30761-30764. https://doi.org/10.1016/S0021-9258(18)47344-9
  10. Forno, L. S. 1996. Neuropathology of Parkinson's disease. J. Neuropathol. Exp. Neurol. 55, 259-272. https://doi.org/10.1097/00005072-199603000-00001
  11. Gu, X., Liu, L., Shen, Q. and Xing, D. 2017. Photoactivation of ERK/CREB/VMAT2 pathway attenuates MPP+-induced neuronal injury in a cellular model of Parkinson's disease. Cell Signal. 37, 103-114. https://doi.org/10.1016/j.cellsig.2017.06.007
  12. Itano, Y. and Nomura, Y. 1995. 1-methyl-4-phenyl-pyridinium ion (MPP+) causes DNA fragmentation and increases the Bcl-2 expression in human neuroblastoma, SHSY5Y cells, through different mechanisms. Brain Res. 704, 240-245. https://doi.org/10.1016/0006-8993(95)01120-X
  13. Jantas, D., Greda, A., Golda, S., Korostynski, M., Grygier, B., Roman, A., Pilc, A. and Lason, W. 2014. Neuroprotective effects of metabotropic glutamate receptor group II and III activators against $MPP^+$-induced cell death in human neuroblastoma SH-SY5Y cells: the impact of cell differentiation state. Neuropharmacology 83, 36-53. https://doi.org/10.1016/j.neuropharm.2014.03.019
  14. Lee, B., Cao, R., Choi, Y. I., Cho, H. E., Rhee, A. D., Hah, C. K., Hoyt, K. R. and Obrietan, K. 2009. The CREB/CRE transcriptional pathway: protection against oxidative stressmediated neuronal cell death. J. Neurochem. 108, 1251-1265. https://doi.org/10.1111/j.1471-4159.2008.05864.x
  15. Li, J., O, W., Li, W., Jiang, Z. G. and Ghanbari, H. A. 2013. Oxidative stress and neurodegenerative disorders. Int. J. Mol. Sci. 14, 24438-24475. https://doi.org/10.3390/ijms141224438
  16. Lin, Y. L., Wang, G. J., Huang, C. L., Lee, Y. C., Liao, W. C., Lai, W. L., Lin, Y. J. and Huang, N. K. 2009. Ligusticum chuanxiong as a potential neuroprotectant for preventing serum deprivation-induced apoptosis in rat pheochromocytoma cells: functional roles of mitogen-activated protein kinases. J. Ethnopharmacol. 122, 417-423. https://doi.org/10.1016/j.jep.2009.02.011
  17. Lonze, B. E. and Ginty, D. D. 2002. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605-623. https://doi.org/10.1016/S0896-6273(02)00828-0
  18. Lonze, B. E., Riccio, A., Cohen, S. and Ginty, D. D. 2002. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34, 371-385. https://doi.org/10.1016/S0896-6273(02)00686-4
  19. Lu, S., Lu, C., Han, Q., Li, J., Du, Z., Liao, L. and Zhao, R. C. 2011. Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicology 279, 189-195 https://doi.org/10.1016/j.tox.2010.10.011
  20. Mattson, M. P. 2000. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell. Biol. 1, 120-129. https://doi.org/10.1038/35040009
  21. Mu, X., Yuan, X., Du, L. D., He, G. R. and Du, G. H. 2016. Antagonism of quercetin against tremor induced by unilateral striatal lesion of 6-OHDA in rats. J. Asian Nat. Prod. Res. 18, 65-71. https://doi.org/10.1080/10286020.2015.1057576
  22. Mukai, R., Kawabata, K., Otsuka, S., Ishisaka, A., Kawai, Y., Ji, Z. S., Tsuboi, H. and Terao, J. 2012. Effect of quercetin and its glucuronide metabolite upon 6-hydorxydopamineinduced oxidative damage in Neuro-2a cells. Free Radic. Res. 46, 1019-1028. https://doi.org/10.3109/10715762.2012.673720
  23. Murakami, A., Ashida, H. and Terao, J. 2008. Multitargeted cancer prevention by quercetin. Cancer Lett. 269, 315-325. https://doi.org/10.1016/j.canlet.2008.03.046
  24. Oliver, F. J., de la Rubia, G., Rolli, V., Ruiz-Ruiz, M. C., de Murcia, G. and Mnissier-de Murcia, J. 1998. Importance of poly (ADP-ribose) polymerase and its cleavage in apoptosis Lesson from an uncleavable mutant. J. Biol. Chem. 273, 33533-33539. https://doi.org/10.1074/jbc.273.50.33533
  25. Oltvai, Z. N. and Korsmeyer, S. J. 1994. Check points of dueling dimers foil death wishes. Cell 79, 189-192. https://doi.org/10.1016/0092-8674(94)90188-0
  26. Ossola, B., Kaariainen, T. M. and Mannisto, P. T. 2009. The multiple faces of quercetin in neuroprotection. Expert Opin. Drug Saf. 8, 397-409. https://doi.org/10.1517/14740330903026944
  27. Perez, A., Gonzalez-Manzano, S., Jimenez, R., Perez-Abud, R., Haro, J. M., Osuna, A., Santos-Buelga, C., Duarte, J. and Perez-Vizcaino, F. 2014. The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: correlation with beta-glucuronidase activity. Pharmacol. Res. 89, 11-18. https://doi.org/10.1016/j.phrs.2014.07.005
  28. Perez-Vizcaino, F., Duarte, J., Jimenez, R., Santos-Buelga, C. and Osuna, A. 2009. Antihypertensive effects of the flavonoid quercetin. Pharmacol. Rep. 61, 67-75. https://doi.org/10.1016/S1734-1140(09)70008-8
  29. Pu, X., Song, Z., Li, Y., Tu, P. and Li, H. 2003. Acteoside from Cistanche salsa inhibits apoptosis by 1-methyl-4-phenylpyridinium ion in cerebellar granule neurons. Planta Med. 69, 65-66. https://doi.org/10.1055/s-2003-37029
  30. Saura, C. A. and Valero, J. 2011. The role of CREB signaling in Alzheimer's disease and other cognitive disorders. Rev. Neurosci. 22, 153-169. https://doi.org/10.1515/RNS.2011.018
  31. Wang, H., Xu, J., Lazarovici, P., Quirion, R. and Zheng, W. 2018. cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of Schizophrenia. Front. Mol. Neurosci. 11, 255. https://doi.org/10.3389/fnmol.2018.00255
  32. Wang, Y., Gao, J., Miao, Y., Cui, Q., Zhao, W., Zhang, J. and Wang, H. 2014. Pinocembrin protects SH-SY5Y cells against MPP+-induced neurotoxicity through the mitochondrial apoptotic pathway. J. Mol. Neurosci. 53, 537-545. https://doi.org/10.1007/s12031-013-0219-x
  33. Weng, Z., Signore, A. P., Gao, Y., Wang, S., Zhang, F., Hastings, T., Yin, X. M. and Chen, J. 2007. Leptin protects against 6-hydroxydopamine-induced dopaminergic cell death via mitogen-activated protein kinase signaling. J. Biol. Chem. 282, 34479-34491. https://doi.org/10.1074/jbc.M705426200
  34. Zhang, C., Yuan, X., Hu, Z., Liu, S., Li, H., Wu, M., Yuan, J., Zhao, Z., Su, J. and Wang, X. 2017. Valproic acid protects primary dopamine neurons from $MPP^+$-induced neurotoxicity. Biomed. Res. Int. 2017, 8124501.
  35. Zhu, J. H., Horbinski, C., Guo, F., Watkins, S., Uchiyama, Y. and Chu, C. T. 2007. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol. 170, 75-86. https://doi.org/10.2353/ajpath.2007.060524