Acknowledgement
Supported by : TUBITAK
References
- J. Ahn and H. Jung, Determination of all subfields of cyclotomic function fields with divisor class number two, Commun. Korean Math. Soc. 22 (2007), no. 2, 163-171. https://doi.org/10.4134/CKMS.2007.22.2.163
- Y. Aubry, Class number in totally imaginary extensions of totally real function fields, in Finite fields and applications (Glasgow, 1995), 23-29, London Math. Soc. Lecture Note Ser., 233, Cambridge Univ. Press, Cambridge, 1996.
- S. Bae and P.-L. Kang, Class numbers of cyclotomic function fields, Acta Arith. 102 (2002), no. 3, 251-259. https://doi.org/10.4064/aa102-3-4
- L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), no. 2, 137-168. https://doi.org/10.1215/S0012-7094-35-00114-4
- D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. https://doi.org/10.1090/S0002-9947-1974-0330106-6
- H. Jung and J. Ahn, Determination of all subfields of cyclotomic function fields with genus one, Commun. Korean Math. Soc. 20 (2005), no. 2, 259-273. https://doi.org/10.4134/CKMS.2005.20.2.259
- H. Jung and J. Ahn, Divisor class number one problem for abelian extensions over rational function fields, J. Algebra 310 (2007), no. 1, 1-14. https://doi.org/10.1016/j.jalgebra.2003.02.006
- M. Kida and N. Murabayashi, Cyclotomic function fields with divisor class number one, Tokyo J. Math. 14 (1991), no. 1, 45-56. https://doi.org/10.3836/tjm/1270130486
- D. Le Brigand, Quadratic algebraic function fields with ideal class number two, in Arithmetic, geometry and coding theory (Luminy, 1993), 105-126, de Gruyter, Berlin, 1996.
- M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), no. 4, 365-378.
- M. Rosen, Number Theory in Function Fields, Graduate Texts in Mathematics, 210, Springer-Verlag, New York, 2002.
- S. Semirat, Class number one problem for imaginary function fields: the cyclic prime power case, J. Number Theory 84 (2000), no. 1, 166-183. https://doi.org/10.1006/jnth.2000.2535
- S. Semirat, Cyclotomic function fields with ideal class number one, J. Algebra 236 (2001), no. 1, 376-395. https://doi.org/10.1006/jabr.2000.8493
- H. Tore, Class numbers of algebraic function fields, Phd Thesis, Hacettepe University, Ankara, 1983.
- L. C. Washington, Introduction to Cyclotomic Fields, second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.
-
J. Q. Zhao, Class number relation between type (l, l, ... , l) function fields over
$F_q$ (T) and their subfields, Sci. China Ser. A 38 (1995), no. 6, 674-682.