DOI QR코드

DOI QR Code

CYLOTOMIC FUNCTION FIELDS OVER FINITE FIELDS WITH CLASS NUMBER THREE

  • Bilhan, Mehpare (Department of Mathematics Middle East Technical University) ;
  • Buyruk, Dilek (Department of Mathematics Abant Izzet Baysal University) ;
  • Ozbudak, Ferruh (Department of Mathematics and Institute of Applied Mathematics Middle East Technical University)
  • Received : 2018.04.27
  • Accepted : 2018.12.06
  • Published : 2019.03.01

Abstract

We list all subfields of cyclotomic function fields over rational function fields with class number three. We also determine all the imaginary abelian extensions with relative class number three, explicitly.

Keywords

Acknowledgement

Supported by : TUBITAK

References

  1. J. Ahn and H. Jung, Determination of all subfields of cyclotomic function fields with divisor class number two, Commun. Korean Math. Soc. 22 (2007), no. 2, 163-171. https://doi.org/10.4134/CKMS.2007.22.2.163
  2. Y. Aubry, Class number in totally imaginary extensions of totally real function fields, in Finite fields and applications (Glasgow, 1995), 23-29, London Math. Soc. Lecture Note Ser., 233, Cambridge Univ. Press, Cambridge, 1996.
  3. S. Bae and P.-L. Kang, Class numbers of cyclotomic function fields, Acta Arith. 102 (2002), no. 3, 251-259. https://doi.org/10.4064/aa102-3-4
  4. L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), no. 2, 137-168. https://doi.org/10.1215/S0012-7094-35-00114-4
  5. D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. https://doi.org/10.1090/S0002-9947-1974-0330106-6
  6. H. Jung and J. Ahn, Determination of all subfields of cyclotomic function fields with genus one, Commun. Korean Math. Soc. 20 (2005), no. 2, 259-273. https://doi.org/10.4134/CKMS.2005.20.2.259
  7. H. Jung and J. Ahn, Divisor class number one problem for abelian extensions over rational function fields, J. Algebra 310 (2007), no. 1, 1-14. https://doi.org/10.1016/j.jalgebra.2003.02.006
  8. M. Kida and N. Murabayashi, Cyclotomic function fields with divisor class number one, Tokyo J. Math. 14 (1991), no. 1, 45-56. https://doi.org/10.3836/tjm/1270130486
  9. D. Le Brigand, Quadratic algebraic function fields with ideal class number two, in Arithmetic, geometry and coding theory (Luminy, 1993), 105-126, de Gruyter, Berlin, 1996.
  10. M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), no. 4, 365-378.
  11. M. Rosen, Number Theory in Function Fields, Graduate Texts in Mathematics, 210, Springer-Verlag, New York, 2002.
  12. S. Semirat, Class number one problem for imaginary function fields: the cyclic prime power case, J. Number Theory 84 (2000), no. 1, 166-183. https://doi.org/10.1006/jnth.2000.2535
  13. S. Semirat, Cyclotomic function fields with ideal class number one, J. Algebra 236 (2001), no. 1, 376-395. https://doi.org/10.1006/jabr.2000.8493
  14. H. Tore, Class numbers of algebraic function fields, Phd Thesis, Hacettepe University, Ankara, 1983.
  15. L. C. Washington, Introduction to Cyclotomic Fields, second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.
  16. J. Q. Zhao, Class number relation between type (l, l, ... , l) function fields over $F_q$(T) and their subfields, Sci. China Ser. A 38 (1995), no. 6, 674-682.