DOI QR코드

DOI QR Code

MWCA Test using 90/150 HCA

90/150 HCA를 이용한 MWCA 판정법

  • 최언숙 (동명대학교 정보통신공학과) ;
  • 조성진 (부경대학교 응용수학과) ;
  • 김한두 (인제대학교 컴퓨터공학부) ;
  • 김진경 (부경대학교 응용수학과) ;
  • 강성원 (부경대학교 응용수학과)
  • Received : 2018.12.04
  • Accepted : 2019.02.15
  • Published : 2019.02.28

Abstract

Self-reciprocal polynomials over finite fields are useful in several applications, including reversible codes with read-backward properties. This paper is a study on 90/150 CA with characteristic polynomials of maximal weight polynomials, which is one of the self-reciprocal polynomials. In this paper, we propose a decision method for determining the existence of 90/150 MWCA corresponding to the maximum weight polynomial of degree 2n using n-cell 90/150 CA with transition rule <$100{\cdots}0$>. The proposed method is verified through experiments.

유한체 상에서 자기상반다항식은 역방향읽기 성질을 갖는 가역 부호를 설계하는 데 유용하다. 본 논문은 자기상반다항식 중 하나인 최대무게 다항식을 특성다항식으로 갖는 90/150 CA에 관한 연구이다. 전이규칙이 <$100{\cdots}0$>인 n-셀 90/150 CA를 이용하여 2n차 최대무게 다항식에 대응하는 90/150 MWCA가 존재하는지에 대한 판정법을 제안한다. 제안하는 방법은 실험을 통하여 검증한다.

Keywords

KCTSAD_2019_v14n1_235_f0001.png 이미지

그림 1. 전이규칙 <0001>인 90/150 CA의 구조 Fig. 1 Structure of 90/150 CA with transition rule <0001>

표 1. 전이규칙 90과 150의 부울식 Table 1. Boolean equation for transition rule 90 and 150

KCTSAD_2019_v14n1_235_t0001.png 이미지

표 2. f1(x)부터 f200(x)까지 90/150 MWCA가 존재하지 않는 차수 Table 2. The degree of the polynomials for which there is no 90/150 MWCA from f1(x) to f200(x)

KCTSAD_2019_v14n1_235_t0002.png 이미지

표 3. 90/150 MWCA 판정 알고리즘 Table 3. 90/150 MWCA decision algorithm

KCTSAD_2019_v14n1_235_t0003.png 이미지

표 4. 90/150 MWCA 판정 알고리즘을 이용한 hm(x)의 인수분해와 f2m(x)의 판정 결과 Table 4. Results of f2m(x) and factorization of hm(x) using 90/150 MWCA decision algorithm

KCTSAD_2019_v14n1_235_t0004.png 이미지

References

  1. S. Wolfram, "Cryptography with Cellular Automata," in Advances in Cryptology: Crypto '85 Proceedings, Lecture Notes in Computer Science 218, 1986, pp. 429-432.
  2. E. Jang, "Synchronization and Secure Communication Application of Chaos Based Malasoma System," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 5, 2017, pp. 747-754. https://doi.org/10.13067/JKIECS.2017.12.5.747
  3. P. Hortensius, R. McLeod, and H. Card, "Parallel random number generation for VLSI systems using cellular automata," IEEE Trans. on Computers, vol. 38, no. 10, 1989, pp. 1466-1473. https://doi.org/10.1109/12.35843
  4. J. Saidov, B. Kim, J. Lee, and G. Lee, "Distributed Hardware Security System with Secure Key Update," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 4, 2017, pp. 671-678. https://doi.org/10.13067/JKIECS.2017.12.4.671
  5. P. Guan, "Cellular Automaton Public-Key Cryptosystem," Complex Systems, vol. 1, no. 1, 1987, pp. 51-56.
  6. X. Wang and D. Luan, "A novel image encryption algorithm using chaos and reversible cellular automata," Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 11, 2013, pp. 3075-3085. https://doi.org/10.1016/j.cnsns.2013.04.008
  7. A. Bakhshandeh and Z. Eslami1, "An authenticated image encryption scheme based on chaotic maps and memory cellular automata," Optics and Lasers in Engineering, vol. 51, no. 6, 2013, pp. 665-673. https://doi.org/10.1016/j.optlaseng.2013.01.001
  8. P. Ping, F. Xu, and Z. Wang, "Image encryption based on non-affine and balanced cellular automata," Signal Processing, vol. 105, no. 1, 2014, pp. 419-429. https://doi.org/10.1016/j.sigpro.2014.06.020
  9. S. Nandi, S. Roy, J. Dansana, W. Karaa, R, Ray, S. Chowdhury, S. Chakraborty, and N. Dey, "Cellular Automata based Encrypted ECG-hash Code Generation: An Application in Inter-human Biometric Authentication System," I. J. Computer Network and Information Security, vol. 6, no. 11, 2014, pp. 1-12. https://doi.org/10.5815/ijcnis.2014.11.01
  10. H. Kim, S. Cho, U. Choi, and M. Kwon, "Synthesis of Uniform CA and 90/150 Hybrid CA," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 3, 2016, pp. 293-302. https://doi.org/10.13067/JKIECS.2016.11.3.293
  11. U. Choi, S. Cho, M. Kwon, S. Kim, and H. Kim, "Synthesis of 90/102(170)/150 linear CA using 90/150 linear CA," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 9, 2016, pp. 885-892. https://doi.org/10.13067/JKIECS.2016.11.9.885
  12. S. Cho, U. Choi, H. Kim, Y. Hwang, J. Kim, and S. Heo, "New synthesis of one-dimensional 90/150 linear hybrid group cellular automata," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 9, 2007, pp. 1720-1724. https://doi.org/10.1109/TCAD.2007.895784
  13. K. Cattell and J. Muzio, "Synthesis of one-dimensional linear hybrid cellular automata," IEEE Trans. Comput-Aided Design Integrated Circuits and Systems," vol. 15, no. 3, 1996, pp. 325-335. https://doi.org/10.1109/43.489103
  14. A. Sabater and P. Gil, "Synthesis of cryptographic interleaved sequences by means of linear cellular automata," Applied Mathematics Letters, vol. 22, 2009, pp. 1518-1524. https://doi.org/10.1016/j.aml.2009.03.018
  15. S. Cho, U. Choi, H. Kim, and H. An, "Analysis of nonlinear sequences based on shrinking generator," J. of the Korea Institute of Electronic Communication Sciences, vol. 5, no. 4, 2010, pp. 412-417.
  16. U. Choi, S. Cho, H. Kim, and J. Kim, "90/150 CA corresponding to polynomial of maximum weight," J. of Cellular Automata, vol. 13, 2018, pp.347-358.
  17. H. Kim, S. Cho, and U. Choi, "On the Construction of the 90/150 State Transition Matrix corresponding to the Trinomial $x^{2^{n-1}}+x+1$," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 2, 2018, pp. 383-390. https://doi.org/10.13067/JKIECS.2018.13.2.383
  18. U. Choi and S. Cho, "Characteristic Polynomial of 90 UCA and Synthesis of CA using Transition Rule Blocks," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 3, 2018, pp. 593-600. https://doi.org/10.13067/JKIECS.2018.13.3.593
  19. U. Choi and S. Cho, "90/150 RCA corresponding to Maximum Weight Polynomial with degree $2^{n}$," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 4, 2018, pp. 819-826. https://doi.org/10.13067/JKIECS.2018.13.4.819
  20. P. Chaudhuri, D. Chowdhury, S. Nandi, and S. Chattopadhyay, Additive cellular automata theory and applications. Los Alamitos, IEEE Computer Society Press, 1997.