• Title/Summary/Keyword: Characteristic Polynomial

Search Result 207, Processing Time 0.037 seconds

LAPLACIAN SPECTRA OF GRAPH BUNDLES

  • Kim, Ju-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1159-1174
    • /
    • 1996
  • The spectrum of the Laplacian matrix of a graph gives an information of the structure of the graph. For example, the product of non-zero eigenvalues of the characteristic polynomial of the Laplacian matrix of a graph with n vertices is n times of the number of spanning trees of that graph. The characteristic polynomial of the Laplacian matrix of a graph tells us the number of spanning trees and the connectivity of given graph. in this paper, we compute the characteristic polynomial of the Laplacian matrix of a graph bundle when its voltage lie in an abelian subgroup of the full automorphism group of the fibre; in particular, the automorphism group of the fibre is abelian. Also we study a relation between the characteristic polynomial of the Laplacian matrix of a graph G and that of the Laplacian matrix of a graph bundle over G. Some applications are also discussed.

  • PDF

Relation between the Irreducible Polynomials that Generates the Same Binary Sequence Over Odd Characteristic Field

  • Ali, Md. Arshad;Kodera, Yuta;Park, Taehwan;Kusaka, Takuya;Nogmi, Yasuyuki;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.166-172
    • /
    • 2018
  • A pseudo-random sequence generated by using a primitive polynomial, trace function, and Legendre symbol has been researched in our previous work. Our previous sequence has some interesting features such as period, autocorrelation, and linear complexity. A pseudo-random sequence widely used in cryptography. However, from the aspect of the practical use in cryptographic systems sequence needs to generate swiftly. Our previous sequence generated by utilizing a primitive polynomial, however, finding a primitive polynomial requires high calculating cost when the degree or the characteristic is large. It’s a shortcoming of our previous work. The main contribution of this work is to find some relation between the generated sequence and irreducible polynomials. The purpose of this relationship is to generate the same sequence without utilizing a primitive polynomial. From the experimental observation, it is found that there are (p - 1)/2 kinds of polynomial, which generates the same sequence. In addition, some of these polynomials are non-primitive polynomial. In this paper, these relationships between the sequence and the polynomials are shown by some examples. Furthermore, these relationships are proven theoretically also.

On the Structure of the Transfer Function which can be Structurally Stabilized by the PID, PI, PD and P Controller

  • Kang, Hwan-Il;Jung, Yo-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.286-286
    • /
    • 2000
  • We consider a negative unity feedback control system in which Che PIO, PI, PD or P controller and a transfer function having only poles are in cascade, We define the notion of the structural polynomial which means that there exists a subdomain of the coefficient space in which the polynomial is Hurwitz (left half plane stable) polynomial. We obtain the necessary and sufficient condition of the structure of the transfer function of which the characteristic polynomial is a structural polynomial, In addition, this paper present another necessary and sufficient condition for the existence of a constant gain controller with which the characteristic polynomial is structurally stable, For the structurally stabilizable P controller, it is allowed that the transfer function may not to all pole plants.

  • PDF

EVERY POLYNOMIAL OVER A FIELD CONTAINING 𝔽16 IS A STRICT SUM OF FOUR CUBES AND ONE EXPRESSION A2 + A

  • Gallardo, Luis H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.941-947
    • /
    • 2009
  • Let q be a power of 16. Every polynomial $P\in\mathbb{F}_q$[t] is a strict sum $P=A^2+A+B^3+C^3+D^3+E^3$. The values of A,B,C,D,E are effectively obtained from the coefficients of P. The proof uses the new result that every polynomial $Q\in\mathbb{F}_q$[t], satisfying the necessary condition that the constant term Q(0) has zero trace, has a strict and effective representation as: $Q=F^2+F+tG^2$. This improves for such q's and such Q's a result of Gallardo, Rahavandrainy, and Vaserstein that requires three polynomials F,G,H for the strict representation $Q=F^2$+F+GH. Observe that the latter representation may be considered as an analogue in characteristic 2 of the strict representation of a polynomial Q by three squares in odd characteristic.

To Determine the Characteristic Polynomial Coefficients Based On the Transient Response

  • Haeri, Mohammad;Tavazoei, Mohammad Saleh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.11-15
    • /
    • 2005
  • This paper presents a method to determine the characteristic polynomial of a closed loop all-pole system in order to obtain desired transient response in terms of the overshoot and speed (rising/settling time). The method adjusts the overshoot by doing some changes in the characteristic ratios of the Bessel-Thompson filter. The closed loop speediness is then tuned by suitable choice of the generalized time constant. Simulation results are presented to evaluate the achievements and make comparison with those of a similar method.

  • PDF

The Parametric Sensitivity Analyses of linear System Relative to the Characteristic Ratios of Coefficient(II) : K-Polynomial Case (계수의 특성비에 대한 선형계의 파라미터적 감도해석(II) : K-다항식의 경우)

  • 김영철;김근식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2004
  • Previously it has been shown that the all pole systems resulting good time responses can be characterized by so called K-polynomial. The polynomial is defined in terms of the principal characteristic ratio $\alpha_1$ and the generalized time constant $\tau$ . In this paper, Part II presents several sensitivity analyses of such systems with respect to $\alpha_1$ and $\tau$ changes. We first deal with the root sensitivity to the perturbation of $\alpha_1$ . By way of determining the unnormalized function sensitivity, both time response sensitivity and frequency response sensitivity are derived. Finally, the root sensitivity relative to $\tau$ change is also analyzed. These results provide some useful insight and background theory when we select of and l to compose a reference model of which denominator is a K-polynomial, which is illustrated by examples.

A Study on Polynomial Pre-ditsortion Technique Using PAPR Reduction Methode (OFDM 시스템에서 PAPR 감소기법을 적용한 다항식 사전왜곡 기법에 관한 연구)

  • Park, Bee-ho;Kim, Wan-tae;Cho, Sung-joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.160-163
    • /
    • 2009
  • HPA is one of the most essential device in wireless communication systems. However, because of nonlinear characteristic of HPA transmit signal is distorted with both amplitude and phase, this distortion leads to deepening adjacent channel interference. So a technique to change the nonlinear characteristic with linear characteristic is needed. In this paper, Among all techniques, we adopts a polynomial pre-distortion technique. Pre-distorted signal by pre-distorter has opposite characteristic with HPA. In result, the signal passed through pre-distorter and HPA has linear characteristic. But the accuracy of opposite characteristic of HPA is decreased at near portion of saturation point. So we improve the accuracy of opposite characteristic of HPA by using PAPR reduction method. In this paper, an adaptive polynomial pre-distortion technique is introduced to counterbalance the nonlinear characteristic of the transmit power amplifier, and a PAPR reduction method is introduced to increase efficiency of polynomial pre-distorter.

  • PDF

Characteristic polynomials of graph bundles with productive fibres

  • Kim, Hye-Kyung;Kim, Ju-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.75-86
    • /
    • 1996
  • Let G be a finite simple connected graph with vertex set V(G) and edge set E(G). Let A(G) be the adjacency matrix of G. The characteristic polynomial of G is the characteristic polynomial $\Phi(G;\lambda) = det(\lambda I - A(G))$ of A(G). A zero of $\Phi(G;\lambda)$ is called an eigenvalue of G.

  • PDF

ENUMERATION OF GRAPHS AND THE CHARACTERISTIC POLYNOMIAL OF THE HYPERPLANE ARRANGEMENTS 𝒥n

  • Song, Joungmin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1595-1604
    • /
    • 2017
  • We give a complete formula for the characteristic polynomial of hyperplane arrangements ${\mathcal{J}}_n$ consisting of the hyperplanes $x_i+x_j=1$, $x_k=0$, $x_l=1$, $1{\leq}i$, j, k, $l{\leq}n$. The formula is obtained by associating hyperplane arrangements with graphs, and then enumerating central graphs via generating functions for the number of bipartite graphs of given order, size and number of connected components.

Generalized characteristic polynomials of semi-zigzag product of a graph and circulant graphs

  • Lee, Jae-Un;Kim, Dong-Seok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1289-1295
    • /
    • 2008
  • We find the generalized characteristic polynomial of graphs G($F_{1},F_{2},{\cdots},F_{v}$) the semi-zigzag product of G and ${\{F_{i}\}^{v}_{i=1}$ obtained from G by replacing vertices by circulant graphs of vertices and joining $F_{i}$'s along the edges of G. These graphs contain discrete tori and are key examples in the study of network model.

  • PDF