DOI QR코드

DOI QR Code

유리차수 미분을 이용한 위치제어기 구현

Position Controller Implementation Using the Fractional Order Derivative

  • 투고 : 2018.12.31
  • 심사 : 2019.02.15
  • 발행 : 2019.02.28

초록

본 연구는 유리차수 미분의 수학적인 방법을 시스템의 응답을 제어하는 제어기에 적용하고자 한다. 일반적인 PID제어기의 라플라스 변환은 s의 정수지수를 갖게 된다. 유리차수의 미분은 라플라스 변환에서 s에 대한 유리수 지수를 갖게 된다. 따라서 이를 제어기로 구성하기 위해서는 유리수 지수에 대한 설계가 적절하지 않아 이산시간으로 변환하여 설계하는 방법을 제안한다. 이를 표준 2차 시스템에 적용하여 성능을 살펴보고, 산업현장에서 많이 사용되는 솔레노이드밸브에 적용한다. 외란 상태의 추정이 가능하도록 루엔버거 관측기를 설계하고 관측된 상태에 대하여 유리차수 제어기를 적용하여 균일하며 정밀한 제어성능을 얻을 수 있었다. 정상상태의 위치오차가 0.1 [%]이내이고, 기동시간이 약 0.3 [s]이내의 정밀하며 균일한 위치제어성능 가짐을 확인할 수 있었다.

This study aims to apply the mathematical method of fractional order derivatives to the controller that controls the system response. In general, the Laplace transform of the PID controller has an exponent of the integer order of s. The derivative of the fractional order has a fractional exponent of s when it is transformed by Laplace transform. Therefore, this controller proposes a design method with the result of discrete time conversion. Because controllers with fractional exponents of s are not easy to design. This controller is applied to a standard secondary system and its performance is examined. Then, it applies to solenoid valve which is widely used in industrial field. A Luenberger's observer was designed to estimate the disturbance state and the observed state was applied to the fractional order controller. As a result, uniform and precise control performance was obtained. It was confirmed that the position error of the steady state is within 0.1 [%] and the rising time is within about 0.03 [s].

키워드

KCTSAD_2019_v14n1_185_f0001.png 이미지

그림 1. 전향보상 PID 제어기 Fig. 1 Forward PID controller

KCTSAD_2019_v14n1_185_f0002.png 이미지

그림 2. 이항계수차수 3 에서 6의 유리차수 미분기 Fig. 2 The Fractional Derivative controller when binomial coefficient order is 3 to 6

KCTSAD_2019_v14n1_185_f0003.png 이미지

그림 3. α에 대한 유리차수 미분기 Fig. 3 The Fractional Derivative controller when α is 0.31 to 0.91

KCTSAD_2019_v14n1_185_f0004.png 이미지

그림 4. 유리차수미분기의 이득 $K^{\alpha}_d$ Fig. 4 The Fractional Derivative controller when the gain $K^{\alpha}_d$ is 50 to 1000

KCTSAD_2019_v14n1_185_f0005.png 이미지

그림 5. 유리차수미분기를 포함하는 PID 제어기 Fig. 5 The PID controller with fractional derivative

KCTSAD_2019_v14n1_185_f0006.png 이미지

그림 6. 솔레노이드 밸브의 위치제어 Fig. 6 The position control of the Solenoid valve

참고문헌

  1. L. Debnath, "A brief historical introduction to fractional calculus," Int. J. of Mathematical Education in Science and Technology, vol. 35, no. 4, 2004, pp. 487-501. https://doi.org/10.1080/00207390410001686571
  2. P. Torvik and R. Bagley, "On the appearance of the fractional derivative in the behavior of real material," J. of Applied Mechanics, Transaction of the ASMF, vol. 51, no. 2, 1984, pp. 294-298. https://doi.org/10.1115/1.3167615
  3. C. Ma and Y. Hori, "Fractional-Order Control: Theory and Applications in Motion Control," IEEE Industrial Electronics Mag., vol. 1, no. 4, 2007, pp. 6-16. https://doi.org/10.1109/MIE.2007.909703
  4. B. Dumitru, Z. Guvenc, and J. Tenreiro Machado, "New Trends in Nanotechnology and Fractional Calculus Applications." Dordrecht, Springer, 2010.
  5. J. Sabatier, O. Pgrawal, and J. Tenreiro Machado, "Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering," Dordrecht, Springer, 2007.
  6. Y. Bae, "Comparison Analysis of Behavior between Differential Equation and Fractional Differential Equation in the Van der Pol Equation," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 1, 2016, pp. 81-86. https://doi.org/10.13067/JKIECS.2016.11.1.81
  7. J. Kang and Y. Jeon, "Position Control for Solenoid Valve using the Fractional Order Controller," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 1, 2018, pp. 101-106. https://doi.org/10.13067/JKIECS.2018.13.1.101
  8. T. Kajima and Y. Kawamura, "Development of a high-speed solenoid valve : investigation of solenoids," IEEE Trans. Industrial Electronics, vol. 42, no. 1, 1995, pp 1-8. https://doi.org/10.1109/41.345838
  9. M. Rahman, N. Cheung, and K. Lim, "Position estimation in solenoid actuators," IEEE Trans. Ind. Applications, vol. 32, no. 3, 1996, pp. 552-559. https://doi.org/10.1109/28.502166