DOI QR코드

DOI QR Code

청감적 소음 감소를 위한 능동소음제어기 설계

A Design Method of The Active Noise Controllers for The Perceived Noise Reduction

  • 김종호 (순천대학교 멀티미디어공학과) ;
  • 오원근 (순천대학교 멀티미디어공학과)
  • 투고 : 2018.12.23
  • 심사 : 2019.02.15
  • 발행 : 2019.02.28

초록

본 논문에서는 능동 소음 제어기(Active Noise Controller)의 잔류 소음을 청감적으로 감소시키는 설계법을 제안하였다. 이를 위한 구조로는 FELMS(Filtered-E Least Mean Squares) 알고리즘과 소음 평가 지수인 NC(noise criteria)를 사용하였으며, 능동 소음 제어기의 유효 동작 주파수 대역 내에서 NC 지수를 최소화하는 FELMS에 내장된 노이즈 쉐이핑 필터의 스펙트럼 조건식을 도출하였다. 제안한 조건을 만족하는 필터가 기존에 사용되었던 심리음향 기반의 필터보다 더 향상된 NC값을 나타내는 것을 시뮬레이션을 통해 확인하였다.

In this paper, we propose a design method of Active Noise Control (ANC) that reduces perceived level of the residual noise. A FELMS (Filtered-E Least Mean Squares) algorithm is used for the ANC system and the NC (noise criteria) is applied as an evaluation criterion of the residual noise. With this structure, we present the allowable spectral shape of the noise shaping filter that minimizes the NC index within the effective operating frequency band of the ANC, and showed that the filter satisfying in the criterion has a lower NC value than the psychoacoustic-based filter used in the previous studies.

키워드

KCTSAD_2019_v14n1_179_f0001.png 이미지

그림 1. FELMS 알고리즘을 사용한 ANC시스템 Fig. 1 ANC system using the FELMS algorithm

KCTSAD_2019_v14n1_179_f0002.png 이미지

그림 2. 제안된 노이즈 쉐이핑 필터 F(z)의 진폭 스펙트럼 Fig. 2 Proposed magnitude spectrum of the noise shaping filter F(z)

KCTSAD_2019_v14n1_179_f0003.png 이미지

그림 3. 시뮬레이션 프로그램의 사용자 화면 (a)소음 및 필터 선택 화면 (b)결과 화면 Fig. 3 User interface of the simulation program (a)noise and filter select window (b)results window

KCTSAD_2019_v14n1_179_f0004.png 이미지

그림 4. 필터 3종의 제어 전후 NC곡선 Fig. 4 NC curve of d(n) and e(n) for the 3 noise shaping filters

표 1. 시뮬레이션 결과 Table 1. Simulation results

KCTSAD_2019_v14n1_179_t0001.png 이미지

참고문헌

  1. T. Kim, H. Jang, and W. Lee, "An Inter-floor Noise Prevention System using an Open-source Controller," J. of the Korea institute of Electronic Communication Science, vol. 12, no. 5, 2017, pp. 899-906. https://doi.org/10.13067/JKIECS.2017.12.5.899
  2. C. Lee, "The effects of a temporal masking on the sound laterlization," J. of the Korea institute of Electronic Communication Science, vol. 5, no. 4, 2010, pp. 352-356.
  3. S. Kuo and D. Rorgan, Active Noise Control Systems. New York: John Wiley & Sons, 1996.
  4. W. Oh, "A single channel open-window active noise control system," Int. J. of Applied Engineering Research, vol. 12, no. 6, 2017, pp. 872-876.
  5. O. Kwon, "Study on Efficient Adaptive Controller for Attenuation of Engine Noises in a Car," J. of the Korea institute of Electronic Communication Science, vol. 9, no. 9, 2014, pp. 983-989. https://doi.org/10.13067/JKIECS.2014.9.9.983
  6. E. Zwicker and H. Fastl, Psychoacoustics: Facts and models. Berlin: Springer Science & Business Media, 2013.
  7. S. M. Kuo and J. Tsai, "Residual noise shaping technique for active noise control systems," The J. of the Acoustical Society of America, vol. 95, no. 3, 1994, pp. 1665-1668. https://doi.org/10.1121/1.408555
  8. S. Sommerfeldt and T. Oamuels, "Incorporation of loudness measures in active noise control," The J. of the Acoustical Society of America, vol. 109, no. 2, 2001, pp. 591-599. https://doi.org/10.1121/1.1339824
  9. H. Bao and I. MShi, "A perceptually motivated active noise control design and its psychoacoustic analysis," Electronics and Telecommunications Research Institute J., vol. 35, no. 5, 2013, pp. 859-868.
  10. J. Kim, Noise and Vibration Engineering - 4th edition, Seoul: Sejin Company, 2013.
  11. W. Oh, "An active noise control window system to reduce noise rating in low frequency band," J. of the Acoustic Society of Korea, vol. 37, no. 5, 2018, pp. 331-337.
  12. W. Oh, "Active noise control system based on the noise evaluation parameters," In Proc. Acoustical Society of Korea Conf., Gangneung, Korea, Nov. 2018, pp. 173.