DOI QR코드

DOI QR Code

A Numerical study on characteristics of fluid flow in a three-dimensional discrete fracture network with variation of length distributions of fracture elements

3차원 이산 균열망 흐름장에서 균열요소의 길이분포 변화에 따른 내 유체 흐름 특성에 관한 수치적 연구

  • 정우창 (경남대학교 공과대학 토목공학과)
  • Received : 2018.12.13
  • Accepted : 2019.01.08
  • Published : 2019.02.28

Abstract

In this study, the effect of the fluid flow characteristics on the length distribution of the fracture elements composing the fracture network is analyzed numerically using the 3D fracture crack network model. The truncated power-law distribution is applied to generate the length distribution of the fracture elements and the simulations of fluid flow are carried out with the exponent ${\beta}_l$ from 1.0 to 6.0. As a result of simulations, when the exponent ${\beta}_l$ increases, the length distribution of the fracture elements gradually decreases, and the connectivity between the fracture elements affecting the permeability of the fracture network becomes weak. When we analyzed the distributions of flow rate calculated at each fracture element with the exponent ${\beta}_l$, the mean flow rate at ${\beta}_l=1.0$ was estimated to be about 447 times larger than that at ${\beta}_l=6.0$ and for the flow calculated at the outflow boundary of the fracture network, the case of ${\beta}_l=1.0$ was estimated to be 6,440 times larger than that of ${\beta}_l=6.0$.

본 연구에서는 3차원 이산 균열망 수치모형을 이용하여 균열망을 구성하는 균열요소의 길이분포가 유체 흐름 특성이 미치는 영향에 대해 수치적으로 분석하였다. 균열요소의 길이분포의 생성을 위해 절단멱분포법칙을 적용하였으며, 지수 ${\beta}_l$을 1.0에서부터 6.0까지 변화시키면서 유체 흐름 모의를 수행하였다. 모의결과 지수 ${\beta}_l$이 증가함에 따라 균열요소들의 길이분포는 점차적으로 작아지며, 이로 인해 균열망의 투수성에 영향을 미치는 균열요소들 간의 연결성은 취약해지는 것으로 나타났다. 각각의 지수 ${\beta}_l$에 대해 균열요소 각각에서 계산된 유량분포를 분석하였을 때 ${\beta}_l=1.0$에서의 평균유량이 ${\beta}_l=6.0$에 비해 약 447배 크게 산정되었으며, 균열망의 유출경계에서 계산된 유량의 경우 ${\beta}_l=1.0$일 때가 6.0에 비해 약 6,440배 크게 산정되었다.

Keywords

SJOHCI_2019_v52n2_149_f0001.png 이미지

Fig. 1. Orientation of a fracture element

SJOHCI_2019_v52n2_149_f0002.png 이미지

Fig. 2. (a) Flow channeling on surfaces of natural fractures and (b) concept of equivalent flow channeling adapted in this study

SJOHCI_2019_v52n2_149_f0003.png 이미지

Fig. 5. Comparison with numerical and analytical discharges at outlet (First case)

SJOHCI_2019_v52n2_149_f0004.png 이미지

Fig. 6. (a) Second case with four single fracture elements and (b) calculated hydraulic head distributions for aperture of 2.0 mm

SJOHCI_2019_v52n2_149_f0005.png 이미지

Fig. 9. Discrete fracture networks generated with power law exponent, βl

SJOHCI_2019_v52n2_149_f0006.png 이미지

Fig. 10. Variation of fracture length distribution with power law exponent, βl

SJOHCI_2019_v52n2_149_f0007.png 이미지

Fig. 11. Connectivity between fracture elements with power law exponent, βl

SJOHCI_2019_v52n2_149_f0008.png 이미지

Fig. 12. Number of fracture elements available to flow with power law exponent, βl

SJOHCI_2019_v52n2_149_f0009.png 이미지

Fig. 13. Head distributions calculated with power law exponent, βl

SJOHCI_2019_v52n2_149_f0010.png 이미지

Fig. 14. Flow rate distributions calculated at each fracture element with power law exponent, βl(The flow rate is represented by the log exponent and values less than –10 are replaced by –10)

SJOHCI_2019_v52n2_149_f0011.png 이미지

Fig. 15. Mean and maximal flow rates at each fracture element and number of –10 or less than -10 with power law exponent, βl

SJOHCI_2019_v52n2_149_f0012.png 이미지

Fig. 16. Flow rates at outlet boundary with power law exponent, βl

SJOHCI_2019_v52n2_149_f0013.png 이미지

Fig. 3. Rectangular cross-sectional area between two intersected fracture elements

SJOHCI_2019_v52n2_149_f0014.png 이미지

Fig. 4. (a) First case of verification with one single fracture and simulation conditions and (b) calculated hydraulic head distributions for aperture of 2.0 mm

SJOHCI_2019_v52n2_149_f0015.png 이미지

Fig. 7. Comparison with numerical and analytical discharges at outlet (Second case)

SJOHCI_2019_v52n2_149_f0016.png 이미지

Fig. 8. (a) Two sets of fracture elements intersecting perpendicularly each other and (b) its parameters (Ntf : theoretical number of fracture elements)

Table 1. Basic statistical values of flow rates at each fracture element with βl (log scale)

SJOHCI_2019_v52n2_149_t0001.png 이미지

References

  1. Adler, P. M., Thovert, J.-F., and Mourzenko, V. V. (2012). Fractured Porous Media, Oxford Univ. Press., Oxford, U. K.
  2. Baghbanan, A., and Jing, L. (2007). "Hydraulic properties of fractured rock masses with correlated fracture length and aperture." International Journal of Rock Mechanics and Mining, Vol. 44, No. 5, pp. 704-719. https://doi.org/10.1016/j.ijrmms.2006.11.001
  3. Barton, C. A., and Zoback, M. D. (1992). "Self-similar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon Pass Scientific Drill Hole." Journal of Geophysical Research: Solid Earth (1978-2012), Vol. 97, No. B4, pp. 5181-5200. https://doi.org/10.1029/91JB01674
  4. Belfield, W. C. (1998). "Incorporating spatial distribution into stochastic modelling of fractures: Multifractals and Levystable statistics." Journal of Structural. Geology, Vol. 20, No. 4, pp. 473-486. https://doi.org/10.1016/S0191-8141(97)00118-1
  5. Berkowitz, B. (2002). "Characterizing flow and transport in fractured geological media: A review." Advanced Water Resources, Vol. 25, No. 8-12, pp. 861-884. https://doi.org/10.1016/S0309-1708(02)00042-8
  6. Bonnet, E., Bour, O., Odling, N. E. Davy, P., Main, I., Cowie, P., and Berkowitz, B. (2001). "Scaling of fracture systems in geological media." Review. Geophysics Journal, Vol. 39, No. 3, pp. 347-383. https://doi.org/10.1029/1999RG000074
  7. Bour, O., and Davy, P. (1997). "Connectivity of random fault networks following a power law fault length distribution." Water Resources Research, Vol. 33, No. 7, pp. 1567-1583. https://doi.org/10.1029/96WR00433
  8. Bourke, P. J. (1987). Channeling of flow through fractures in rock, AERE-R-12305, Vol. 18, Issue 23, IAEA, p. 1-23.
  9. Bruel, D. (2002). "Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir." Oil and Gas Science and Technology-Review of IFP, Vol. 57, No. 5, pp. 459-470. https://doi.org/10.2516/ogst:2002030
  10. Cacas, M. C., Ledoux, E., Marsily, G. de, Tillie, B., Barbreau, A., Durand, E., Feuga, B., and Peaudecerf, P. (1990). "Modeling fracture flow with a stochastic discrete fracture network: Calibration and validation: 1. The flow model." Water Resources Research, Vol. 26, No. 3, pp. 479-489. https://doi.org/10.1029/WR026i003p00479
  11. Charlaix, E., Guyon, E., and Roux, S. (1987). "Permeability of a random array of fractures of widely varying apertures." Transport in Porous Media, Vol. 2, No. 1, pp. 31-43. https://doi.org/10.1007/BF00208535
  12. Ciarlet, P. (1983). Introduction a l'analyse numerique matriciel et a l'optimisation, Masson. Paris.
  13. de Dreuzy, J.-R., Darcel, C., Davy, P., and Bour O., (2004), "Influence of spatial correlation of fracture centers on the permeability of two dimensional fracture networks following a power law length distribution." Water Resources Research, Vol. 40, pp. 1-11.
  14. de Dreuzy, J.-R., Davy, P., and Bour O. (2001), "Hydraulic properties of two-dimensional random fracture networks following a power law length distribution 2. Permeability of networks based on lognormal distribution of apertures." Water Resources Research, Vol. 37, No. 8, pp. 2079-2095. https://doi.org/10.1029/2001WR900010
  15. de Dreuzy, J.-R., Meheust, Y., and Pichot G. (2012). "Influence of fracture scale heterogeneity on the flow properties of threedimensional discrete fracture networks." Journal of Geophysical. Research, Vol. 117, pp. 1-21.
  16. Dverstrop, B., and Anderson, J. (1989). "Application of the discrete fracture network concept with field: possibilities of model calibration and validation." Water Resources Research, Vol. 25, No. 3, pp. 540-550. https://doi.org/10.1029/WR025i003p00540
  17. Faybishenko, B. (2005). Dynamics of Fluids and Transport in Fractured Rock, Vol. 162, AGU Washington, D.C.
  18. Frampton, A., and Cvetkovic V. (2010), "Inference of field-scale fracture transmissivities in crystalline rock using flow log measurements." Water Resources Research, Vol. 46, pp. 1-17.
  19. Gentier, S. (1986). Morphologie et comportment hydromechanique d'une fracture naturelle dans un granite sous contrainte normale: Etude experimentale et theorique, Ph.D. Thesis, Universite d'Orlean.
  20. Gudmundsson, A., Berg, S. S., Lyslo, K. B., and Skurtveit, E. (2001), "Fracture networks and fluid transport in active fault zones." Journal of Structural. Geology, Vo. 23, No. 2, pp. 343-353. https://doi.org/10.1016/S0191-8141(00)00100-0
  21. Hatton, C., Main, I., and Meredith, P. (1994), "Non-universal scaling of fracture length and opening displacement." Nature, Vol. 367, No. 6459, pp. 160-162. https://doi.org/10.1038/367160a0
  22. Hyman, J. D., Aldrich, G., Viswanathan, H. Makedonska, N., and Karra, S. (2016). "Fracture size and transmissivity correlations: Implications for transport simulations in sparse threedimensional discrete fracture networks following a truncated power law distribution of fracture size." Water Resources Research, Vol. 52, pp. 6274-6489.
  23. Jeong, W. C., and Park, Y. J. (2009). "A Numerical Study on Hydraulic Behavior in a Fractured Rock Medium with Hydromechanical Interaction." Journal of Korean Geo-Environmental Society, Vol. 10, No. 2, pp. 61-68.
  24. Karra, S., Makedonska, N., Viswanathan, H. S., Painter, S. L., and Hyman, J. D. (2015). "Effect of advective flow in fractures and matrix diffusion on natural gas production." Water Resources Research, Vol. 51, pp. 8646-8657. https://doi.org/10.1002/2014WR016829
  25. Makedonska, N., Hyman, J. D., Karra, S., Painter, S. L., Gable, C. W., and Viswanathan, H. S. (2016). "Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks." Advanced Water Resources, Vol. 94, pp. 487-497.
  26. Mardia, K. V. (1972). Statistics of directional data, Academic Press, New York.
  27. Margolin, G., Berkowitz, B., and Scher H. (1998). "Structure, flow, and generalized conductivity scaling in fracture networks." Water Resources Research, Vol. 34, No. 9, pp. 2103-2121. https://doi.org/10.1029/98WR01648
  28. Molz, F. J., Rajaram, H., and Lu S. (2004). "Stochastic fractal-based models of heterogeneity in subsurface hydrology: Origins, applications, limitations, and future research questions." Review of Geophysics, Vol. 42, pp. 1-42.
  29. Moreno, L., and Neretnieks, I. (1991). Fluid and solute trabsport in a network of channels, SKB Technical Report 91-44, SKB, Stockholm, p. 1-235.
  30. National Research Council (1996). Rock Fractures and Fluid Flow: Contemporary Understanding and Applications, National Academy Press, Washington, D. C.
  31. Neuman, S. (2005). "Trends, prospects and challenges in quantifying flow and transport through fractured rocks." Hydrogeology Journal, Vol. 13, No. 1, pp. 124-147. https://doi.org/10.1007/s10040-004-0397-2
  32. Odling, N. E. (1997). "Scaling and connectivity of joint systems in sandstones from western Norway." Journal of Structural Geology, Vol. 19, No. 10, pp. 1257-1271. https://doi.org/10.1016/S0191-8141(97)00041-2
  33. Ortega, O., and Marrett, R. (2000). "Prediction of macro fracture properties using micro fracture information, Mesaverde Group sandstones, San Juan basin, New Mexico." Journal of Structural Geology, Vol. 22, No. 5, pp. 571-588. https://doi.org/10.1016/S0191-8141(99)00186-8
  34. Painter, S., and Cvetkovic V. (2005). "Upscaling discrete fracture network simulations: An alternative to continuum transport models." Water Resources Research, Vol. 41, pp. 1-10.
  35. Patriarche, D., Pili, E., Adler, P. M., and Thovert J.-F. (2007). "Stereological analysis of fractures in the roselend tunnel and permeability determination." Water Resources Research, Vol. 43, pp. 1-13.
  36. Segall, P., and Pollard, D. D. (1983). "Joint formation in granitic rock of the Sierra Nevada." Geological Society of America Bulletin, Vol. 94, No. 5, pp. 563-575. https://doi.org/10.1130/0016-7606(1983)94<563:JFIGRO>2.0.CO;2
  37. Vermilye, J. M., and Scholz, C. H. (1995). "Relation between vein length and aperture." Journal of Structural. Geology, Vo. 17, No. 3, pp. 423-434. https://doi.org/10.1016/0191-8141(94)00058-8
  38. Walmann, T., Malthe-Sorenssen, A., Feder, J., Jossang, T., Meakin, P., and Hardy, H. H. (1996). "Scaling relations for the lengths and widths of fractures." Physical Review Letters, Vol. 77, pp. 5393-5396. https://doi.org/10.1103/PhysRevLett.77.5393
  39. Witherspoon, P. A., and Gale, J. E. (1980). "Mechanical and hydraulic properties of rocks related to induced seismicity." Engineering Geology, No. 11, pp. 23-55.
  40. Wong, T. F., Fredrich, J. T., and Gwanmesia, G. D. (1989). "Crack aperture statistics and pore space fractal geometry of Westerly granite and Rutland quartzite: Implications for an elastic contact model of rock compressibility." Journal of Geophysical Research: Solid Earth (1978-2012), Vol. 94, No. B8, pp. 10267-10278. https://doi.org/10.1029/JB094iB08p10267
  41. Yakowitz, S. J. (1977). Computational probability and simulation, Addison-Wesley Publishing Company Ed., p. 240.