DOI QR코드

DOI QR Code

시간 영역 상관관계 기법을 통한 곡선운동을 하는 차량용 전방 관측 역산란 합성 영상 형성

Forward-Looking Synthetic Inverse Scattering Image Formation for a Vehicle with Curved Motion Based on Time Domain Correlation

  • 이혁중 (한국과학기술원 전기 및 전자공학부) ;
  • 전주환 (한국과학기술원 전기 및 전자공학부) ;
  • 황성현 (한국전자통신연구원) ;
  • 유성진 (한국전자통신연구원) ;
  • 변우진 (한국전자통신연구원)
  • Lee, Hyukjung (School of Electrical Engineering, KAIST) ;
  • Chun, Joohwan (School of Electrical Engineering, KAIST) ;
  • Hwang, Sunghyun (Electronics and Telecommunications Research Institute, ETRI) ;
  • You, Sungjin (Electronics and Telecommunications Research Institute, ETRI) ;
  • Byun, Woojin (Electronics and Telecommunications Research Institute, ETRI)
  • 투고 : 2018.09.21
  • 심사 : 2018.11.05
  • 발행 : 2019.01.31

초록

본 논문에서는 전방 관측 특히, 곡선운동을 하는 차량용 전방 관측 역산란 합성 영상 형성에 대해 다룬다. 영상 형성을 위해 시간 영역 상관관계(time domain correlation: TDC) 기법이 사용되었으며, 차량의 전방 지면의 2D 영상을 얻는다. TDC는 공간변화 시스템에 대한 정합 필터링을 구현한 기법이므로 가우시안 잡음에 강건하다. 또한, 직선운동을 할 때의 영상과 곡선운동을 할 때의 영상에 대한 비교, 분석을 통해 곡선운동을 했을 때 영상의 엔트로피가 증가하는 대신 영상의 분해능이 향상되었음을 보인다.

In this paper, we deal with forward-looking imaging, and focus on forward-looking synthetic inverse scattering imaging for a vehicle with curved motion. For image formation, time domain correlation(TDC) is used and a 2D image of the ground in front of the vehicle is generated. Because TDC is a technique that implements matched filtering for a space-variant system, it is robust to Gaussian additive noise of measurements. Furthermore, comparison and analysis between images from linear motion and curved motion show that the resolution of the image is improved; however, the entropy of the image is increased owing to curved motion.

키워드

JJPHCH_2019_v30n1_60_f0001.png 이미지

그림 2. 송신하는 선형 주파수 변조 펄스 열 Fig. 2. Transmitting LFM pulse train.

JJPHCH_2019_v30n1_60_f0002.png 이미지

그림 3. 모의실험 상황 Fig. 3. Simulation scene.

JJPHCH_2019_v30n1_60_f0003.png 이미지

그림 4. 측정치의 신호 대 잡음 비가 10 dB일 때 차량이 직선운동하는 상황에서 시간 영역 상관관계를 통해 얻은 역산란 합성 영상 Fig. 4. Synthetic inverse scattering image based on TDC when SNR of measurement is 10 dB with linear motion.

JJPHCH_2019_v30n1_60_f0004.png 이미지

그림 5. 측정치의 신호 대 잡음 비가 10 dB일 때 차량이 곡선운동하는 상황에서 시간 영역 상관관계를 통해 얻은 역산란 합성 영상 Fig. 5. Synthetic inverse scattering image based on TDC when SNR of measurement is 10 dB with curved motion.

JJPHCH_2019_v30n1_60_f0005.png 이미지

그림 6. 측정치의 신호 대 잡음 비가 10 dB일 때 차량이 곡선운동, 직선운동할 때의 점 분산 함수 비교 Fig. 6. PSF comparison between linear motion and curved motion when SNR of measurement is 10 dB.

JJPHCH_2019_v30n1_60_f0006.png 이미지

그림 7. 측정치의 신호 대 잡음 비가 0 dB일 때 차량이 직선운동하는 상황에서 시간 영역 상관관계를 통해 얻은 역산란 합성 영상 Fig. 7. Synthetic inverse scattering image based on TDC when SNR of measurement is 0 dB with linear motion.

JJPHCH_2019_v30n1_60_f0007.png 이미지

그림 8. 측정치의 신호 대 잡음 비가 0 dB일 때 차량이 곡선운동하는 상황에서 시간 영역 상관관계를 통해 얻은 역산란 합성 영상 Fig. 8. Synthetic inverse scattering image based on TDC when SNR of measurement is 0 dB with curved motion.

JJPHCH_2019_v30n1_60_f0008.png 이미지

그림 9. 측정치의 신호 대 잡음 비가 −10 dB일 때 차량이 직선운동하는 상황에서 시간 영역 상관관계를 통해 얻은 역산란 합성 영상 Fig. 9. Synthetic inverse scattering image based on TDC when SNR of measurement is –10 dB with linear motion.

JJPHCH_2019_v30n1_60_f0009.png 이미지

그림 10. 측정치의 신호 대 잡음 비가 –10 dB일 때 차량이 곡선운동하는 상황에서 시간 영역 상관관계를 통해 얻은 역산란 합성 영상 Fig. 10. Synthetic inverse scattering image based on TDC when SNR of measurement is –10 dB with curved motion.

JJPHCH_2019_v30n1_60_f0010.png 이미지

그림 1. 차량용 전방 관측 영상레이다의 운용상황 Fig. 1. Forward-looking imaging radar operation geometry with a vehicle.

표 1. 모의실험 파라미터 Table 1. Simulation parameters.

JJPHCH_2019_v30n1_60_t0001.png 이미지

표 2. 영상의 엔트로피 비교표 Table 2. Comparison of entropy values.

JJPHCH_2019_v30n1_60_t0002.png 이미지

참고문헌

  1. M. A. Richards, J. A. Scheer, and W. A. Holm, Principles of Modern Radar, Citeseer, SciTech Publishing, 2010.
  2. M. Soumekh, Synthetic Aperture Radar Signal Processing, New York, John Wiley & Sons, 1999.
  3. J. Wu, J. Yang, Y. Huang, H. Yang, and H. Wang, "Bistatic forward-looking SAR: Theory and challenges," in 2009 IEEE Radar Conference, Pasadena, CA, 2009, pp. 1-4.
  4. T. Espeter, I. Walterscheid, J. Klare, A. R. Brenner, and J. H. G. Ender, "Bistatic forward-looking SAR: Results of a spaceborne-airborne experiment," IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 4, pp. 765-768, Jul. 2011. https://doi.org/10.1109/LGRS.2011.2108635
  5. I. Walterscheid, T. Espeter, J. Klare, A. R. Brenner, and J. H. G. Ender, "Potential and limitations of forward-looking bistatic SAR," in 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, 2010, pp. 216-219.
  6. J. Wu, Z. Li, Y. Huang, J. Yang, H. Yang, and Q. H. Liu, "Focusing bistatic forward-looking SAR with stationary transmitter based on keystone transform and nonlinear chirp scaling," IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 1, pp. 148-152, Jan. 2014. https://doi.org/10.1109/LGRS.2013.2250904
  7. I. Walterscheid, T. Espeter, J. Klare, and A. Brenner, "Bistatic spaceborne-airborne forward-looking SAR," in 8th European Conference on Synthetic Aperture Radar, Jun. 2010, pp. 1-4.
  8. J. Wu, J. Yang, H. Yang, and Y. Huang, "Optimal geometry configuration of bistatic forward-looking SAR," in Acoustics, Speech and Signal Processing, ICASSP 2009. IEEE International Conference, IEEE, 2009, pp. 1117-1120.
  9. W. Li, Y. Yang, J. Huang, J. Kong, and L. Wu, "An improved radon-transform-based scheme of Doppler centroid estimation for bistatic forward-looking SAR," IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 2, pp. 379-383, Mar. 2011. https://doi.org/10.1109/LGRS.2010.2078485
  10. M. A. Richards, "Iterative noncoherent angular superresolution(radar)," in Proceedings of the 1988 IEEE National Radar Conference, Ann Arbor, MI, 1988, pp. 100-105.
  11. A. Gambardella, M. Maurizio, "On the superresolution of microwave scanning radiometer measurements," Geoscience and Remote Sensing Letters, IEEE, vol. 5, no. 4, pp. 796-800, Oct. 2008. https://doi.org/10.1109/LGRS.2008.2006285
  12. Y. Zha, Y. Zhang, Y. Huang, and J. Yang, "Bayesian angular superresolution algorithm for real-aperture imaging in forward-looking radar," Information, vol. 6, no. 4, pp. 650-668, 2015. https://doi.org/10.3390/info6040650
  13. Y. Zha, Y. Huang, Z. Sun, Y. Wang, and J. Yang, "Bayesian deconvolution for angular super-resolution in forward-looking scanning radar," Sensors, vol. 15, no. 3, pp. 6924-6946, 2015. https://doi.org/10.3390/s150306924
  14. Y. Zhang, Y. Huang, Y. Zha, and J. Yang, "Superresolution imaging for forward-looking scanning radar with generalized Gaussian constraint," Progress In Electromagnetics Research M, vol. 46, pp. 1-10, 2016. https://doi.org/10.2528/PIERM15120805
  15. 이혁중, 전주환, 송성찬, "재가중치 ${\ell}1$-최소화를 통한 밀리미터파(W 밴드) 전방 관측 초해상도 레이다 영상 기법," 한국전자파학회논문지, 28(8), pp. 636-645, 2017년 8월. https://doi.org/10.5515/KJKIEES.2017.28.8.636
  16. G. Brooker, Introduction to Sensors for Ranging and Imaging, Chennai, Tamil Nadu, SciTech Publishing, 2009.
  17. A. Ishimaru, T. K. Chan, and Y. Kuga, "An imaging technique using confocal circular synthetic aperture radar," IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 5, pp. 1524-1530, 1998. https://doi.org/10.1109/36.718856
  18. S. R. J. Axelsson, "Mapping performance on curved-path SAR," in International Symposium on Remote Sensing, Toulouse, France, Jan. 2002, vol. 4543.
  19. P. Stefanov, G. Uhlmann, "Is a curved flight path in SAR better than a straight one?," SIAM Journal on Applied Mathematics, vol. 73, no. 4, pp. 1596-1612, 2013. https://doi.org/10.1137/120882639
  20. C. Hu, Z. Liu, and T. Long, "An improved CS algorithm based on the curved trajectory in geosynchronous SAR," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 3, pp. 795-808, Jun. 2012. https://doi.org/10.1109/JSTARS.2012.2188096
  21. A. Ribalta, "Time-domain reconstruction algorithms for FMCW-SAR," IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 3, pp. 396-400, May, 2011. https://doi.org/10.1109/LGRS.2010.2078486
  22. T. Zeng, R. Wang, and F. Li, "SAR image autofocus utilizing minimum-entropy criterion," IEEE Geoscience and Remote Sensing Letters, vol. 10, no. 6, pp. 1552-1556, 2013. https://doi.org/10.1109/LGRS.2013.2261975