• Title/Summary/Keyword: Time Domain Correlation

Search Result 267, Processing Time 0.028 seconds

A Study on the Pitch Search Time Reduction of G.723.1 Vocoder by Improved Hybrid Domain Cross-correlation (개선된 혼성영역 교차상관법에 의한 G.723.1의 피치검색시간 단축에 관한 연구)

  • Jo, Wang-Rae;Choi, Seong-Young;Bae, Myung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2324-2328
    • /
    • 2010
  • In this paper we proposed a new algorithm that can reduce the open-loop pitch estimation time of G.723.1. The time domain cross-correlation method is simple but has long processing time by recursive multiplication. For reduction of processing time, we use the method that compute the cross-correlation by multiplying the Fourier value of speech by it's complex conjugate. Also, we can reduce the processing time by omitting the bit-reversing of FFT and IFFT for time-frequency domain transform. As a result, the processing time of improved hybrid domain cross-correlation algorithm is reduced by 67.37% of conventional time domain cross-correlation.

ACOUSTIC TIME DOMAIN CORRELATION TECHNIQUE (ATDCT) IN OCEAN WAVE AND CURRENT OBSERVATION

  • I.N. Dienkulov;E.J. Kim;S.W. Yoon;V.V. Frolov
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.210-214
    • /
    • 1993
  • There are two general techniques to observe particle movements in fluid. One is the acoustic time domain correlation technique and another is the frequency domain Doppler-shift techniques. Both techniques were reviewed and mentioned their some merits and demerits in ocean wave and current observation. Some possible application of acoustic time domain correlation technique in ocean wind wave measurement was discussed.

  • PDF

Detection and Estimation of Multiple Faults on a Coaxial Cable Based on TFDR Algorithm (TFDR 기법을 이용한 Coaxial Cable상에 존재하는 다양한 결함 감지 및 추정)

  • 송은석;신용준;육종관;박진배
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1079-1088
    • /
    • 2003
  • In this paper, we propose a high-resolution time-frequency domain reflectometry technique as a methodology of detection and estimation of faults on a wire. This method adopts the time-frequency cross correlation characteristics of the observed signal in both time and frequency domains simultaneously. The accuracy of the proposed method is verified with experiments using a RG type coaxial cable and comparing it with traditional time domain as well as frequency domain reflectometry methods. It is clearly shown here that the proposed algorithm produces excellent results compared to the conventional methods for single as well as multiple fault cables.

Experimental Validation on Underwater Sound Speed Measurement Method Using Cross-Correlation of Time-Domain Acoustic Signals in a Reverberant Water Tank (잔향 수조에서의 시간 이력 수음 신호 간 교차상관을 이용한 수중 음속 계측 방법에 관한 실험적 검증)

  • Joo-Yeob Lee;Kookhyun Kim;Sung-Ju Park;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Underwater sound speed is an important analysis parameter on an estimation of the underwater radiated noise (URN) emitted from vessels. This paper aims to present an underwater sound speed measurement procedure using a cross-correlation of time-domain acoustic signals and validate the procedure through an experiment in a reverberant water tank. For the purpose, time-domain acoustic signals transmitted by a Gaussian pulse excitation from an acoustic projector have been measured at 20 hydrophone positions in the reverberant water tank. Then, the sound speed in water has been calculated by a linear regression using 190 cross-correlation cases of distances and time lags between the received signals and the result has been compared with those estimated by the existing empirical formulae. From the result, it is regarded that the presented experimental procedure to measure an underwater sound speed is reliably applicable if the time resolution is sufficiently high in the measurement.

Artificial blood flow measurement using Ultrasound Time Domain Correlation (Ultrasound Time Domain Correlation을 이용한 가상 혈류 속도 측정)

  • 김의준
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.103-106
    • /
    • 1992
  • 기존의 혈류 속도 측정 방법으로는 인체내에 반사 물질을 투입하는 Fick technique과 electromagnetic flowmeter등을 이용한 invasive method와 Ultrasonic Doppler method에 의한 noninvasive method가 이용되고 있다. 이 방법들은 혈과의 모양이나 혈관에서의 flow velocity profile등에 관한 정확한 정보를 얻을 수 없다. 이와같은 문제점들을 해결하기 위한 혈류속도 측정 방법으로 실험실 조건하에서 인체에서와 유사한 혈류측정 장치를 제작하여, vessel의 표본 체적내의 산란체로부터 후방산란되는 초음파 신호의 correlation을 이용한 Ultrasound Time Domain Correlation (UTDC) technique을 연구하였다. UTDC technique을 이용하여 유속을 측정한 결과, 12% 이하의 정밀도로 평균 유체 유속이 측정되었고, Ultrasonic Doppler method에서 측정할 수 없는 혈과의 모양과 혈관의 각 위치에서의 유속 및 혈관벽에 이물질의 존재여부를 명확히 판단할 수 있었다.

  • PDF

Image registration using Hough transform and Phase correlation in Wavelet domain

  • Summar, Bhuttichai;Chitsobhuk, Orachat;Kasemsiri, Watjanapong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2006-2009
    • /
    • 2005
  • This paper presents a method for registering images using phase correlation technique in fourier domain, hough transform and multi-resolution wavelet. To register images, source and input images are transformed to wavelet domain. An angular transition can be obtained by applying hough transform technique followed by phase correlation. Then we apply phase correlation technique to find x-axis and y-axis transition. We apply wavelet transform to reduce processing time and also use its coefficients as edge information instead of canny detector. With multi-resolution property of wavelet transform, registration time can be greatly reduced. After we get all transition parameters, we transform the input images according to these parameters. Then, we compose and blend all images into a new large image with details of all source images. From our experiment, we can find the accurate transition both x-y translation and angular transition with less error.

  • PDF

Estimation of Fault Location on a Power Line using the Time-Frequency Domain Reflectometry (절연전선 결함 위치 추정에 대한 시간-주파수 영역 반사파 계측법의 적용)

  • Doo, Seung-Ho;Kwak, Ki-Seok;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.268-275
    • /
    • 2008
  • In this paper, we introduce a new method for detecting and estimating faults on a power line using the time-frequency domain reflectometry system. The system rests upon time-frequency signal analysis and uses a chirp signal which is multiplied by Gaussian envelope. The chirp signal is used as a reference signal, and we can get the reflected signal from a fault on a wire. To detect and estimate faults, we analyze the reflected signal by Wigner time-frequency distribution function and normalized time-frequency cross correlation function. In this paper we design an optimal reference signal for power line and implement a system for estimating fault distance on a power line with the TFDR implemented by PXI equipments. This approach is verified by some experiments with HIV 2.25mm power lines.

Implementation of TFDR system with PXI type instruments for detection and estimation of the fault on the coaxial cable (동축 케이블의 결함 측정에 있어서 PXI 타입의 계측기를 이용한 개선된 TFDR 시스템의 구현)

  • Choe, Deok-Seon;Park, Jin-Bae;Yun, Tae-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.91-94
    • /
    • 2003
  • In this paper, we achieve implementation of a Time-Frequency Domain Reflectometry(TFDR) system through comparatively low performance(100MS/s) PCI extensions for Instrumentation(PXI). The TFDR is the general methodology of Time Domain Reflectometry(TDR) and Frequency Domain Reflectometry(FDR). This methodology is robust in Gaussian noises, because the fixed frequency bandwidth is used. Moreover, the methodology can get more information of the fault by using the normalized time-frequency cross correlation function. The Arbitrary Waveform Generator(AWG) module generates the input signal, and the digital oscilloscope module acquires the input and reflected signals, while PXI controller module performs the control of the total PXI modules and execution of the main algorithm. The maximum range of measurement and the blind spot are calculated according ta variations of time duration and frequency bandwidth. On the basis of above calculations, the algorithm and the design of input signals used in the TFDR system are verified by real experiments. The correlation function is added to the TDR methodology for reduction of the blind spot in the TFDR system.

  • PDF

Estimation of Fault Location on a Transmission Line via Time-Frequency Domain Reflectometry (시간-주파수 반사파 계측 방법을 이용한 전송선로의 결함 위치 추정)

  • Choe TokSon;Kwak Ki-Seok;Yoon Tae Sung;Park Jin Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.521-530
    • /
    • 2005
  • In this paper, a new high resolution reflectometry scheme, time-frequency domain reflectometry(TFDR), isproposed to detect and estimate a fault in a transmission line. Traditional reflectometry methodologies have been achieved either in the time domain or in the frequency domain only. However, the TFDR can jump over the performance limits of the traditional reflectometry methodologies because the acquired signal is analyzed in time and frequency domain simultaneously. In the TFDR, the new reference signal and the novel TFDR algorithm are proposed for analyzing the acquired signal in the time-frequency domain. Because the reference signal of Gaussian envelop chirp signal is localized in the time and frequency domain simultaneously, it is suitable to the analysis in the time-frequency domain. In the proposed TFDR algorithm, the time-frequency distribution function and the normalized time-frequency cross correlation function are used to detect and estimate a fault in a transmission line. That algorithm is verified for real-world coaxial cables which are typical transmission line with different types of faults by the TFDR system composed of real instruments. The performance of the TFDR methodology is compared with that o( the commercial time domain reflectomeoy(TDR) experiments, so that concludes the TFDR methodology can detect and estimate the fault with smaller error than TDR methodology.

A study on the development of Pulsed Doppler System using Auto-Correlation (Auto-Correlation을 이용한 펄스 도플러 시스템에 관한 연구)

  • Lim, Chun-Sung;Rang, Chung-Shin;Lee, Hang-Sei;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.705-708
    • /
    • 1988
  • Ultrasound Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. Pulsed Doppler System uses Phase detector and zerocrossing method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time domain, had been fabricated. But time-domain analyzing such as audio evaluation and zerocrossing detection for instantaneous and mean frequency measurement doesn't, provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency domain technique to improve system performance. In this paper, we describe a unit which is composed of Pulsed Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of blood Signal.

  • PDF