References
- Terashima K, Matsumoto T. Strain typing of shiitake (Lentinula edodes) cultivars by AFLP analysis, focusing on a heat-dried fruiting body. Mycoscience. 2004;45(1):79-82. https://doi.org/10.1007/S10267-003-0152-X
- Babasaki K, Neda H, Murata H. megB1, a novel macroevolutionary genomic marker of the fungal phylum Basidiomycota. Biosci Biotechnol Biochem. 2007;71(8):1927-1939. https://doi.org/10.1271/bbb.70144
- Song XX, Zhao Y, Song CY, et al. Intergenic spacer 1 (IGS1) polymorphism map: a marker for the initial classification of cultivated Lentinula edodes strains in China. J Integr Agr. 2018;17(11):2458-2466. https://doi.org/10.1016/s2095-3119(18)61967-7
- Zhang R, Huang C, Zheng S, et al. Strain-typing of Lentinula edodes in China with inter simple sequence repeat markers. Appl Microbiol Biotechnol. 2007;74(1):140-145. https://doi.org/10.1007/s00253-006-0628-7
- Zhang Y, Molina FI. Strain typing of Lentinula edodes by random amplified polymorphic DNA assay. FEMS Microbiol Lett. 1995;131(1):17-20. https://doi.org/10.1016/0378-1097(95)00228-W
- Wu X, Li H, Zhao W, et al. SCAR makers and multiplex PCR-based rapid molecular typing of Lentinula edodes strains. Curr Microbiol. 2010;61(5):381-389. https://doi.org/10.1007/s00284-010-9623-4
- Lee HY, Moon S, Shim D, et al. Development of 44 novel polymorphic SSR markers for determination of shiitake mushroom (Lentinula edodes) cultivars. Genes. 2017;8(4):109. https://doi.org/10.3390/genes8040109
- Moon S, Lee HY, Shim D, et al. Development and molecular characterization of novel polymorphic genomic DNA SSR markers in Lentinula edodes. Mycobiology. 2017;45(2):105-109. https://doi.org/10.5941/MYCO.2017.45.2.105
- Guichoux E, Lagache L, Wagner S, et al. Current trends in microsatellite genotyping. Mol Ecol Resour. 2011;11(4):591-611. https://doi.org/10.1111/j.1755-0998.2011.03014.x
- Arima T, Morinaga T. Electrophoretic karyotype of Lentinus edodes. Trans Mycol Soc Japan. 1993;34:481-485.
- Miyazaki K, Huang F, Zhang B, et al. Genetic map of a basidiomycete fungus, Lentinula edodes (shiitake mushroom), constructed by tetrad analysis. Breed Sci. 2008;58(1):23-30. https://doi.org/10.1270/jsbbs.58.23
- Cipriani G, Marrazzo MT, Di Gaspero G, et al. A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol. 2008;8(1):127. https://doi.org/10.1186/1471-2229-8-127
- Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5(6):435-445. https://doi.org/10.1038/nrg1348
- Butler JM. Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci. 2006;51(2):253-265. https://doi.org/10.1111/j.1556-4029.2006.00046.x
- Munyard KA, Ledger JM, Lee CY, et al. Characterization and multiplex genotyping of Alpaca tetranucleotide microsatellite markers. Small Ruminant Res. 2009;85(2-3):153-156. https://doi.org/10.1016/j.smallrumres.2009.07.012
- De la Rosa R, Belaj A, Mu-noz-Merida A, et al. Development of EST-derived SSR markers with long-core repeat in olive and their use for paternity testing. J Am Soc Hortic Sci. 2013;138(4):290-296. https://doi.org/10.21273/jashs.138.4.290
- Faria DA, Mamani EMC, Pappas GJ Jr., et al. Genotyping systems for Eucalyptus based on tetra-, penta-, and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests. Tree Genet Genomes. 2011;7(1):63-77. https://doi.org/10.1007/s11295-010-0315-9
- Kishine M, Tsutsumi K, Kitta K. A set of tetranucleotide core motif SSR markers for efficient identification of potato (Solanum tuberosum) cultivars. Breed Sci. 2017;67(5):544-547. https://doi.org/10.1270/jsbbs.17066
- Shim D, Park SG, Kim K, et al. Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes. J Biotechnol. 2016;223:24-25. https://doi.org/10.1016/j.jbiotec.2016.02.032
- Faircloth BC. MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locusspecific primer design. Mol Ecol Resour. 2008;8(1):92-94. https://doi.org/10.1111/j.1471-8286.2007.01884.x
- Temnykh S, DeClerck G, Lukashova A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 2001;11(8):1441-1452. https://doi.org/10.1101/gr.184001
- Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-98.
- Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5(1):113. https://doi.org/10.1186/1471-2105-5-113
- Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-2729. https://doi.org/10.1093/molbev/mst197
- Blacket MJ, Robin C, Good RT, et al. Universal primers for fluorescent labelling of PCR fragments - an efficient and cost-effective approach to genotyping by fluorescence. Mol Ecol Resour. 2012;12(3):456-463. https://doi.org/10.1111/j.1755-0998.2011.03104.x
- Brownstein MJ, Carpten JD, Smith JR. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques. 1996;20(6):1004-1010. https://doi.org/10.2144/96206st01
- Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007;16(5):1099-1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
- Chen L, Gong Y, Cai Y, et al. Genome sequence of the edible cultivated mushroom Lentinula edodes (Shiitake) reveals insights into lignocellulose degradation. PLoS One. 2016;11(8):e0160336. https://doi.org/10.1371/journal.pone.0160336
- Sakamoto Y, Nakade K, Sato S, et al. Lentinula edodes genome survey and postharvest transcriptome analysis. Appl Environ Microbiol. 2017;83:e02990-16.
Cited by
- Identification techniques and detection methods of edible fungi species vol.374, 2019, https://doi.org/10.1016/j.foodchem.2021.131803