References
- van der Does HC, Rep M. Adaptation to the host environment by plant-pathogenic fungi. Ann Rev Phytopathol. 2017;55(1):427-450. https://doi.org/10.1146/annurev-phyto-080516-035551
- Kulkarni RD, Thon MR, Pan H, et al. Novel Gprotein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 2005;6(3):R24. https://doi.org/10.1186/gb-2005-6-3-r24
- Taylor BL, Zhulin IB. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev. 1999;63(2):479-506. https://doi.org/10.1128/mmbr.63.2.479-506.1999
- Vreede J, van der Horst MA, Hellingwerf KJ, et al. PAS domains. Common structure and common flexibility. J Biol Chem. 2003;278(20):18434-18439. https://doi.org/10.1074/jbc.M301701200
- Rojas-Pirela M, Rigden DJ, Michels PA, et al. Structure and function of per-ARNT-sim domains and their possible role in the life-cycle biology of Trypanosoma cruzi. Mol Biochem Parasitol. 2018;219:52-66. https://doi.org/10.1016/j.molbiopara.2017.11.002
- Gilles-Gonzalez M, Gonzalez G. Signal transduction by heme-containing PAS-domain proteins. J Appl Physiol. 2004;96(2):774-783. https://doi.org/10.1152/japplphysiol.00941.2003
- Herivaux A, So YS, Gastebois A, et al. Major sensing proteins in pathogenic fungi: the hybrid histidine kinase family. PLoS Pathog. 2016;12:e1005683. https://doi.org/10.1371/journal.ppat.1005683
- Moglich A, Ayers RA, Moffat K. Structure and signaling mechanism of Per-ARNT-Sim domains. Structure. 2009;17(10):1282-1294. https://doi.org/10.1016/j.str.2009.08.011
- Grose JH, Smith TL, Sabic H, et al. Yeast PAS kinase coordinates glucose partitioning in response to metabolic and cell integrity signaling. EMBO J. 2007;26(23):4824-4830. https://doi.org/10.1038/sj.emboj.7601914
- Huang M, Xu Q, Mitsui K, et al. PSK1 regulates expression of SOD1 involved in oxidative stress tolerance in yeast. FEMS Microbiol Lett. 2014;350(2):154-160. https://doi.org/10.1111/1574-6968.12329
- Barba-Ostria C, Lledias F, Georgellis D. The Neurospora crassa DCC-1 protein, a putative histidine kinase, is required for normal sexual and asexual development and carotenogenesis. Eukaryot Cell. 2011;10(12):1733-1739. https://doi.org/10.1128/EC.05223-11
- Purschwitz J, Muller S, Kastner C, et al. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol. 2008;18(4):255-259. https://doi.org/10.1016/j.cub.2008.01.061
- Dean RA, Talbot NJ, Ebbole DJ, et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 2005;434(7036):980-986. https://doi.org/10.1038/nature03449
- Kang SH, Khang CH, Lee YG. Regulation of cAMP-dependent protein kinase during appressorium formation in Magnaporthe grisea. FEMS Microbiol Lett. 1999;170(2):419-423. https://doi.org/10.1016/S0378-1097(98)00576-X
- Lee YH, Dean RA. Hydrophobicity of contact surface induces appressorium formation in Magnaporthe grisea. FEMS Microbiol Lett. 1994;115(1):71-75. https://doi.org/10.1016/0378-1097(94)90463-4
- Liu W, Zhou X, Li G, et al. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog. 2011;7(1):e1001261. https://doi.org/10.1371/journal.ppat.1001261
- Wilson RA, Talbot NJ. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol. 2009;7(3):185-195. https://doi.org/10.1038/nrmicro2032
- Jacob S, Foster AJ, Yemelin A, et al. Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae. Microbiologyopen. 2014;3(5):668-687. https://doi.org/10.1002/mbo3.197
- Kim KS, Lee YH. Gene expression profiling during condiation in the rice blast pathogen Magnaporthe oryzae. PLoS One. 2012;7(8):e43202. https://doi.org/10.1371/journal.pone.0043202
- Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-2739. https://doi.org/10.1093/molbev/msr121
- Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Mulder NJ, Apweiler R, Attwood TK, et al. InterPro, progress and status in 2005. Nucleic Acids Res. 2004;33(Database issue):D201-205. https://doi.org/10.1093/nar/gki106
- Yu JH, Hamari Z, Han KH, et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;41(11):973-981. https://doi.org/10.1016/j.fgb.2004.08.001
- Sweigard JA, Chumley FG, Valent B. Cloning and analysis of CUT1, a cutinase gene from Magnaporthe grisea. Mol Gen Genet. 1992;232(2):174-182. https://doi.org/10.1007/BF00279994
- Han JH, Lee HM, Shin JH, et al. Role of the MoYAK1 protein kinase gene in Magnaporthe oryzae development and pathogenicity. Environ Microbiol. 2015;17(11):4672-4689. https://doi.org/10.1111/1462-2920.13010
- Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.
- Fu T, Kim JO, Han JH, et al. A small GTPase RHO2 plays an important role in pre-infection development in the rice blast pathogen Magnaporthe oryzae. Plant Pathol J. 2018;34(6):470. https://doi.org/10.5423/PPJ.OA.04.2018.0069
- Park J, Kong S, Kim S, et al. Roles of forkheadbox transcription factors in controlling development, pathogenicity, and stress response in Magnaporthe oryzae. Plant Pathol J. 2014;30(2):136-150. https://doi.org/10.5423/PPJ.OA.02.2014.0018
- Bayry J, Aimanianda V, Guijarro JI, et al. Hydrophobins-unique fungal proteins. PLoS Pathog. 2012;8(5):e1002700. https://doi.org/10.1371/journal.ppat.1002700
- Li D, Agrellos OA, Calderone R. Histidine kinases keep fungi safe and vigorous. Curr Opin Microbiol. 2010;13(4):424-430. https://doi.org/10.1016/j.mib.2010.04.007
- Li X, Zhong K, Yin Z, et al. The seven transmembrane domain protein MoRgs7 functions in surface perception and undergoes coronin MoCrn1-dependent endocytosis in complex with Ga subunit MoMagA to promote cAMP signaling and appressorium formation in Magnaporthe oryzae. PLoS Pathog. 2019;15(2):e1007382. https://doi.org/10.1371/journal.ppat.1007382
- Xu X, Li G, Li L, et al. Genome-wide comparative analysis of putative Pth11-related G proteincoupled receptors in fungi belonging to Pezizomycotina. BMC Microbiol. 2017;17(1):166. https://doi.org/10.1186/s12866-017-1076-5
- Sabnam N, Roy Barman S. WISH, a novel CFEM GPCR is indispensable for surface sensing, asexual and pathogenic differentiation in rice blast fungus. Fungal Genet Biol. 2017;105:37-51. https://doi.org/10.1016/j.fgb.2017.05.006
- Lee YH, Dean RA. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell. 1993;5(6):693-700. https://doi.org/10.1105/tpc.5.6.693
- Kim S, Ahn IP, Rho HS, et al. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol Microbiol. 2005;57(5):1224-1237. https://doi.org/10.1111/j.1365-2958.2005.04750.x
Cited by
- Red light‐regulated interaction of Per‐Arnt‐Sim histidine kinases with partner histidine‐containing phosphotransfer proteins in Physcomitrium patens vol.26, pp.9, 2021, https://doi.org/10.1111/gtc.12878