DOI QR코드

DOI QR Code

Conserved Roles of MonA in Fungal Growth and Development in Aspergillus Species

  • Son, Ye-Eun (School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University) ;
  • Park, Hee-Soo (School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University)
  • Received : 2019.07.15
  • Accepted : 2019.09.24
  • Published : 2019.12.01

Abstract

MonA is a subunit of a guanine nucleotide exchange factor that is important for vacuole passing and autophagy processes in eukaryotes. In this study, we characterized the function of MonA, an orthologue of Saccharomyces cerevisiae Mon1, in the model fungus Aspergillus nidulans and a toxigenic fungus A. flavus. In A. nidulans, the absence of AnimonA led to decreased fungal growth, reduced asexual reproduction, and defective cleistothecia production. In addition, AnimonA deletion mutants exhibited decreased spore viability, had reduced trehalose contents in conidia, and were sensitive to thermal stress. In A. flavus, deletion of AflmonA caused decreased fungal growth and defective production of asexual spores and sclerotia structures. Moreover, the absence of monA affected vacuole morphology in both species. Taken together, these results indicate that MonA plays conserved roles in controlling fungal growth, development and vacuole morphology in A. nidulans and A. flavus.

Keywords

References

  1. Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12:310-350. https://doi.org/10.1128/cmr.12.2.310
  2. Schuster E, Dunn-Coleman N, Frisvad JC, et al. On the safety of Aspergillus niger-a review. Appl Microbiol Biotechnol. 2002;59:426-435. https://doi.org/10.1007/s00253-002-1032-6
  3. Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438(7071):1157-1161. https://doi.org/10.1038/nature04300
  4. Yu JH, Keller N. Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol. 2005;43(1):437-458. https://doi.org/10.1146/annurev.phyto.43.040204.140214
  5. Adams TH, Wieser JK, Yu JH. Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev. 1998;62(1):35-54. https://doi.org/10.1128/mmbr.62.1.35-54.1998
  6. Casselton L, Zolan M. The art and design of genetic screens: filamentous fungi. Nat Rev Genet. 2002;3(9):683-697. https://doi.org/10.1038/nrg889
  7. Kumar P, Mahato DK, Kamle M, et al. Aflatoxins: a global concern for food safety, human health and their management. Front Microbiol. 2016;7:2170.
  8. Luk KC, Kobbe B, Townsend JM. Production of cyclopiazonic acid by Aspergillus flavus Link. Appl Environ Microbiol. 1977;33(1):211-212. https://doi.org/10.1128/aem.33.1.211-212.1977
  9. Nickel W, Brugger B, Wieland FT. Vesicular transport: the core machinery of COPI recruitment and budding. J Cell Sci. 2002;115(Pt 16):3235-3240. https://doi.org/10.1242/jcs.115.16.3235
  10. Jahn R, Scheller RH. SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7(9):631-643. https://doi.org/10.1038/nrm2002
  11. Klionsky DJ, Herman PK, Emr SD. The fungal vacuole: composition, function, and biogenesis. Microbiol Rev. 1990;54(3):266-292. https://doi.org/10.1128/mr.54.3.266-292.1990
  12. Price A, Seals D, Wickner W, et al. The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J Cell Biol. 2000;148(6):1231-1238. https://doi.org/10.1083/jcb.148.6.1231
  13. Sato TK, Rehling P, Peterson MR, et al. Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol Cell. 2000;6(3):661-671. https://doi.org/10.1016/S1097-2765(00)00064-2
  14. Hughes TE, Zhang H, Logothetis DE, et al. Visualization of a functional Galpha q-green fluorescent protein fusion in living cells. Association with the plasma membrane is disrupted by mutational activation and by elimination of palmitoylation sites, but not be activation mediated by receptors or AlF4. J Biol Chem. 2001;276:4227-4235. https://doi.org/10.1074/jbc.m007608200
  15. Brocker C, Kuhlee A, Gatsogiannis C, et al. Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Proc Natl Acad Sci USA. 2012;109(6):1991-1996. https://doi.org/10.1073/pnas.1117797109
  16. Wang CW, Stromhaug PE, Kauffman EJ, et al. Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol. 2003;163(5):973-985. https://doi.org/10.1083/jcb.200308071
  17. Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA. 2006;103(32):11821-11827. https://doi.org/10.1073/pnas.0601617103
  18. Nordmann M, Cabrera M, Perz A, et al. The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr Biol. 2010;20(18):1654-1659. https://doi.org/10.1016/j.cub.2010.08.002
  19. Wang CW, Stromhaug PE, Shima J, et al. The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J Biol Chem. 2002;277(49):47917-47927. https://doi.org/10.1074/jbc.M208191200
  20. Li Y, Li B, Liu L, et al. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum. Sci Rep. 2015;5(1):18101.
  21. Son YE, Jung WH, Oh SH, et al. Mon1 is essential for fungal virulence and stress survival in Cryptococcus neoformans. Mycobiology. 2018;46(2):114-121. https://doi.org/10.1080/12298093.2018.1468053
  22. Kafer E. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet. 1977;19:33-131. https://doi.org/10.1016/S0065-2660(08)60245-X
  23. Barratt RW, Johnson GB, Ogata WN. Wild-type and mutant stocks of Aspergillus nidulans. Genetics. 1965;52(1):233-246. https://doi.org/10.1093/genetics/52.1.233
  24. Yu JH, Hamari Z, Han KH, et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;41(11):973-981. https://doi.org/10.1016/j.fgb.2004.08.001
  25. Shaaban MI, Bok JW, Lauer C, et al. Suppressor mutagenesis identifies a velvet complex remediator of Aspergillus nidulans secondary metabolism. Eukaryot Cell. 2010;9(12):1816-1824. https://doi.org/10.1128/EC.00189-10
  26. Park HS, Bayram O, Braus GH, et al. Characterization of the velvet regulators in Aspergillus fumigatus. Mol Microbiol. 2012;86(4):937-953. https://doi.org/10.1111/mmi.12032
  27. Park HS, Lee MK, Kim SC, et al. The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans. PLoS ONE. 2017;12(5):e0177099. https://doi.org/10.1371/journal.pone.0177099
  28. Ni M, Yu JH. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One. 2007;2(10):e970. https://doi.org/10.1371/journal.pone.0000970
  29. Eom TJ, Moon H, Yu JH, et al. Characterization of the velvet regulators in Aspergillus flavus. J Microbiol. 2018;56(12):893-901. https://doi.org/10.1007/s12275-018-8417-4
  30. Gao HM, Liu XG, Shi HB, et al. MoMon1 is required for vacuolar assembly, conidiogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Res Microbiol. 2013;164(4):300-309. https://doi.org/10.1016/j.resmic.2013.01.001
  31. Cabrera M, Engelbrecht-Vandre S, Ungermann C. Function of the Mon1-Ccz1 complex on endosomes. Small GTPases. 2014;5(3):e972861-e972863. https://doi.org/10.4161/sgtp.29040
  32. Kwon NJ, Shin KS, Yu JH. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet Biol. 2010;47(12):981-993. https://doi.org/10.1016/j.fgb.2010.08.009
  33. He ZM, Price MS, Obrian GR, et al. Improved protocols for functional analysis in the pathogenic fungus Aspergillus flavus. BMC Microbiol. 2007;7(1):104. https://doi.org/10.1186/1471-2180-7-104