DOI QR코드

DOI QR Code

효과적인 Cu2+ 이온 제거를 위한 산화철(Fe3O4)/다공성 탄소 복합체 합성

Synthesis of Fe3O4/porous Carbon Composite for Efficient Cu2+ Ions Removal

  • Seok, Dohyeong (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Younghun (Department of Chemical Engineering, Kwangwoon University) ;
  • Sohn, Hiesang (Department of Chemical Engineering, Kwangwoon University)
  • 투고 : 2019.08.30
  • 심사 : 2019.09.01
  • 발행 : 2019.12.31

초록

본 연구에서는 구리 이온(Cu2+ ion) 제거를 위한 산화철(Fe3O4)/다공성 탄소 복합체를 합성하였으며, 이를 바탕으로 구리 이온 제거에 대한 특성 평가를 실시하였다. SEM, XRD 분석을 진행하여 수열합성(hydrothermal) 반응을 이용한 산화철/다공성 탄소 복합체의 형태와 구조를 확인하였다. BET 분석을 통해 비표면적과 기공 크기를 확인하였으며, UV-vis 장비를 통해 성능 평가를 실시하여 자성이 있는 Fe3O4와 다공성 탄소와의 시너지효과를 통해 액체 상태에서 존재하는 구리 이온을 제거할 수 있는 가능성을 제시하였다.

In this study, the Fe3O4/porous carbon composite was synthesized by hydrothermal method for removal of Cu2+ ions and the characteristic of Cu2+ ions removal was performed. The Fe3O4/porous carbon composite was investigated via using SEM, XRD for its morphology and structure. BET analysis was conducted to conform a specific area and pore size distribution of the composite. For the investigation of the performance for removal of Cu2+ ions in the solution, UV-vis spectrometer was used. It suggests that a synergetic effect between magnetic Fe3O4 and porous carbon shows an improvement for removal of Cu2+ ions.

키워드

참고문헌

  1. N. Boujelben, J. Bouzid, and Z. Elouear, "Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: Study in single and binary systems", J. Hazard. Mater., 163(1), 376 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.128
  2. L. Jarup, "Hazards of heavy metal contamination", Br. Med. Bull., 68(1), 167 (2003). https://doi.org/10.1093/bmb/ldg032
  3. S. A. Ong, E. Toorisaka, M. Hirata, and T. Hano, "Adsorption and toxicity of heavy metals on activated sludge", ScienceAsia, 36(3), 204 (2010). https://doi.org/10.2306/scienceasia1513-1874.2010.36.204
  4. Y. Nuhoglu and E. Oguz, "Removal of copper (II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis", Process Biochem., 38(11), 1627 (2003). https://doi.org/10.1016/S0032-9592(03)00055-4
  5. A. Dabrowski, Z. Hubicki, P. Podkoscielny, and E. Robens, "Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method", Chemosphere, 56(2), 91 (2004). https://doi.org/10.1016/j.chemosphere.2004.03.006
  6. D. Feng, C. Aldrich, and H. Tan, "Treatment of acid mine water by use of heavy metal precipitation and ion exchange", Miner. Eng., 13(6), 623 (2000). https://doi.org/10.1016/S0892-6875(00)00045-5
  7. A. Z. M. Badruddoza, A. S. H. Tay, P. Y. Tan, K. Hidajat, and M. S. Uddin, "Carboxymethyl-${\beta}$-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies", J. Hazard. Mater., 185(2-3), 1177 (2011). https://doi.org/10.1016/j.jhazmat.2010.10.029
  8. D. Karabelli, C. Uzum, T. Shahwan, A. E. Eroglu, T. B. Scott, K. R. Hallam, and I. Lieberwirth, "Batch removal of aqueous $Cu^{2+}$ ions using nanoparticles of zero-valent iron: A study of the capacity and mechanism of uptake", Ind. Eng. Chem. Res., 47(14), 4758 (2008). https://doi.org/10.1021/ie800081s
  9. B. Yu, Y. Zhang, A. Shukla, S. S. Shukla, and K. L. Dorris, "The removal of heavy metal from aqueous solutions by sawdust adsorption-removal of copper", J. Hazard. Mater., 80(1-3), 33 (2000). https://doi.org/10.1016/S0304-3894(00)00278-8
  10. R. Chen, C. Zhi, H. Yang, Y. Bando, Z. Zhang, N. Sugiur, and D. Golberg, "Arsenic (V) adsorption on $Fe_3O_4$ nanoparticle-coated boron nitride nanotubes", J. Colloid Interface Sci., 359(1), 261 (2011). https://doi.org/10.1016/j.jcis.2011.02.071
  11. H. Alijani and Z. Shariatinia, "Effective aqueous arsenic removal using zero valent iron doped MWCNT synthesized by in situ CVD method using natural ${\alpha}-Fe_2O_3$ as a precursor", Chemosphere, 171, 502 (2017). https://doi.org/10.1016/j.chemosphere.2016.12.106
  12. S. S. Banerjee and D. H. Chen, "Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent", J. Hazard. Mater., 147(3), 792 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.079
  13. M. D. Ma, H. Wu, Z. Y. Deng, and X. Zhao, "Arsenic removal from water by nanometer iron oxide coated single-wall carbon nanotubes", J. Mol. Liq., 259, 369-375 (2018). https://doi.org/10.1016/j.molliq.2018.03.052
  14. Z. Wu, W. Li, P. A. Webley, and D. Zhao, "General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal", Adv. Mater., 24(4), 485 (2012). https://doi.org/10.1002/adma.201103789
  15. K. S. W. Sing, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)", Pure Appl. Chem., 57(4), 603 (1985). https://doi.org/10.1351/pac198557040603
  16. Y. Lin, H. Chen, K. Lin, B. Chen, and C. Chiou, "Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution", J. Environ. Sci., 23(1), 44 (2011). https://doi.org/10.1016/S1001-0742(10)60371-3