DOI QR코드

DOI QR Code

에너지 소모를 고려한 역삼투 해수담수화 플랜트 주요 성능인자 영향 분석

Comprehensive Analysis of Major Factors Associated with the Performance of Reverse Osmosis Desalination Plant for Energy-saving

  • 김지혜 (K-water 연구원 맑은물연구소) ;
  • 이경혁 (K-water 연구원 맑은물연구소) ;
  • 임재림 (K-water 연구원 맑은물연구소)
  • Kim, Jihye (Water Works Research Center, K-water Research Institute) ;
  • Lee, Kyung-Hyuk (Water Works Research Center, K-water Research Institute) ;
  • Lim, Jae-Lim (Water Works Research Center, K-water Research Institute)
  • 투고 : 2019.09.25
  • 심사 : 2019.10.08
  • 발행 : 2019.12.31

초록

기후변화로 인해 가속화되고 있는 충남 지역 가뭄현상에 대응하고 대산 임해산업단지의 증가하는 용수 수요를 만족하기 위해서, K-water에서는 100,000 ㎥/일 규모 역삼투 해수담수플랜트 건설 사업을 추진하고 있다. 이에 본 연구에서는 해수담수플랜트 운영비용의 70% 이상을 담당하는 역삼투 공정 성능에 영향을 미치는 주요 인자에 대한 성능 분석을 수행하였다. 대산 지역 해수 염분농도 및 수온 변화 조건에서 RO 공정의 전력소모는 2.39 ± 0.13 kWh/㎥로 나타났으며, 막여과유속과 회수율이 낮을수록 전력소모가 절감되어 연간 운영비용이 감소하였다. 주요 막 제조사별 고유량 막의 성능 비교 결과, 전량 2단 여과공정(full two pass) 기준 생산수 TDS는 평균 3.84 mg/L로 양호하였고, 전력소모는 2.22 ± 0.13 kWh/㎥ 수준으로 확인되었다. 역삼투 공정 구성을 전량 2단 여과방식에서 partial 또는 split partial 방식으로 변경함에 따라 전력소모는 최대 0.29 kWh/㎥, 막모듈 설치비용은 최대 15.6% 절감 가능할 것으로 기대된다.

A worsened drought in Chungnam province of Korea due to climate change and increasing water demand at Daesan industrial complex have motivated the 100,000 ㎥/d seawater desalination project. In this study, therefore, the comprehensive analysis of parameters affecting the reverse osmosis (RO) performance was conducted. Under the various conditions of feedwater salinity and temperature in Daesan, energy consumption was calculated as 2.39 ± 0.13 kWh/㎥. The decrease in membrane flux and recovery rate positively impacted annual operation cost. The average total dissolved solids (TDS) of the permeate and energy consumption with highly permeable membrane according to the membrane manufacturer were 3.84 mg/L and 2.22 ± 0.13 kWh/㎥, respectively. In addition, energy saving up to 0.29 kWh/㎥ or cost reduction of membrane module up to 15.6% is expected by changing the RO configuration from full two pass to partial or split partial two pass.

키워드

참고문헌

  1. S. P. Good and K. K. Caylor, "Climatological determinants of woody cover in Africa", PNAS, 108, 4902 (2011). https://doi.org/10.1073/pnas.1013100108
  2. M. K. Wittholz, B. K. O'Neill, C. B. Colby, and D. Lewis, "Estimating the cost of desalination plants using a cost database", Desalination, 229, 10 (2008). https://doi.org/10.1016/j.desal.2007.07.023
  3. R. Tautenbach, T. Linn, and D. M. K. Al-Gobaisi, "Present and future pretreatment concepts-strategies for reliable and low-maintenance reverse osmosis seawater desalination", Desalination, 110(1-2), 97 (1997). https://doi.org/10.1016/S0011-9164(97)00089-1
  4. J. Kim, M. Park, S. A. Snyder, and J. H. Kim, "Reverse osmosis (RO) and pressure retarded osmosis (PRO) hybrid processes: Model-based scenario study", Desalination, 322, 121 (2013). https://doi.org/10.1016/j.desal.2013.05.010
  5. Global Water Intelligence, "Desalination markets 2016" (2015).
  6. M. Hwang and I. S. Kim, "Comparative analysis of seawater desalination technology in Korea and overseas", J. Korean Soc. Environ. Eng., 38, 225 (2016).
  7. N. Voutchkov, "Desalination cost assessment and management", pp. 156-158, Water Treatment Academy, Bangkok, Thailand (2011).
  8. J. Kim, K. Park, D. R. Yang, and S. Hong, "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants", Appl. Energy, 254 (2019).
  9. M. Wilf, "The guidebook to membrane desalination technology", pp. 15-16, Balaban Desalination Publications, Hopkinton, MA, USA (2011).
  10. N. Voutchkov, "Desalination engineering planning and design", pp. 422-429, McGraw-Hill, New York, USA (2013).
  11. K-water, "Feasibility study and basic planning for the seawater desalination project in Daesan coastal industrial complex", 6-190-6-196 (2019).
  12. J. Blazheska, "Insight in the thin-film polyamide membrane structure after compaction", Ph.D. Dissertation, Univ. of Rovira I Virgili, Tarragona (2016).