DOI QR코드

DOI QR Code

전이 금속 산화물을 이용한 가시광선 기반 광촉매 분해

Visible Light-based Photocatalytic Degradation by Transition Metal Oxide

  • Lee, Soomin (Nano Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University) ;
  • Park, Yeji (Nano Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University) ;
  • Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Patel, Rajkumar (Energy Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 투고 : 2019.11.15
  • 심사 : 2019.12.16
  • 발행 : 2019.12.31

초록

광촉매는 물에서 유기 염료를 분해하는 친환경적 기술이다. 산화 텅스텐은 이산화 티타늄에 비해 더 작은 밴드갭을 지니고 있어 광촉매 나노물질로서 활발히 연구되고 있다. 계층적 구조의 합성, 백금 도핑, 나노 복합물 또는 다른 반도체와의 결합 등이 광촉매 분해 효율을 향상시키는 방법들로 연구되고 있다. 이들 방법들은 광 파장의 적색편이를 유도하여 전자 이동, 전자-정공 쌍의 형성과 재결합에 영향을 미친다. 산화 텅스텐의 형태 개질을 통해 앞서 언급한 광촉매 분해 효율을 향상시키는 방법들과 합성에 대해 분석하였으며 금속 산화물과 탄소 복합재를 결합하는 방법이 새로운 물질의 합성이 필요없으며 가장 효율적인 방법으로 조사되었다. 이러한 광촉매 기술은 수처리 분리막기술과 모듈화하여 정수처리 목적으로 사용될 수 있다.

Photocatalysis is an environment friendly technique for degrading organic dyes in water. Tungsten oxide is becoming an active area of research in photocatalysis nanomaterials for having a smaller bandgap than the previously favored titanium dioxide. Synthesis of hierarchical structures, doping platinum (Pt), coupling with nanocomposites or other semiconductors are investigated as valid methods of improving the photocatalytic degradation efficiency. These impact the reaction by creating a redshift in the wavelength of light used, effecting charge transfer, and the formation/recombination of electron-hole pairs. Each of the methods mentioned above are investigated in terms of synthesis and photocatalytic efficiency, with the simplest being modification on the morphology of tungsten oxide, since it does not need synthesis of other materials, and the most efficient in photocatalytic degradation being complex coupling of metal oxides and carbon composites. The photocatalysis technology can be incorporated with water purification membrane by modularization process and applied to advanced water treatment system.

키워드

참고문헌

  1. S. G. Kumar and K. S. R. K. Rao, "Tungsten-based nanomaterials ($WO_3$ & $Bi_2WO_6$): Modifications related to charge carrier transfer mechanisms and photocatalytic applications", Appl. Surf. Sci., 355, 939 (2015). https://doi.org/10.1016/j.apsusc.2015.07.003
  2. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari, and D. D. Dionysiou, "A review on the visible light active titanium dioxide photocatalysts for environmental applications", Appl. Catal. B: Environ., 125, 331 (2012). https://doi.org/10.1016/j.apcatb.2012.05.036
  3. S. Bai, K. Zhang, J. Sun, R. Luo, D. Li, and A. Chen, "Surface decoration of $WO_3$ architectures with $Fe_2O_3$ nanoparticles for visible-light-driven photocatalysis", CrystEngComm, 16, 3289 (2014). https://doi.org/10.1039/c3ce42410c
  4. D. Xu, T. Jiang, D. Wang, L. Chen, L. Zhang, Z. Fu, L. Wang, and T. Xie, "pH-dependent assembly of tungsten oxide three-dimensional architectures and their application in photocatalysis", ACS Appl. Mater. Interfaces, 6, 9321 (2014). https://doi.org/10.1021/am501651m
  5. R. Abe, H. Takami, N. Murakami, and B. Ohtani, "Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide", J. Am. Chem. Soc., 130, 7780 (2008). https://doi.org/10.1021/ja800835q
  6. A. Purwanto, H. Widiyandari, T. Ogi, and K. Okuyama, "Role of particle size for platinum-loaded tungsten oxide nanoparticles during dye photodegradation under solar-simulated irradiation", Catal. Commun., 12, 525 (2011). https://doi.org/10.1016/j.catcom.2010.11.020
  7. L. Xu, D. Gu, X. Chang, L. Chai, Z. Li, X. Jin, and S. Sun, "Adsorption and photocatalytic study of dye degradation over the g-$C_3N_4/W_{18}O_{49}$ nanocomposite", Micro Nano Lett., 13, 541 (2018). https://doi.org/10.1049/mnl.2017.0719
  8. H. I. Kim, H. N. Kim, S. H. Weon, G. H. Moon, J. H. Kim, and W. Y. Choi, "Robust co-catalytic performance of nanodiamonds loaded on $WO_3$ for the decomposition of volatile organic compounds under visible light", ACS Catal., 6, 8350 (2016). https://doi.org/10.1021/acscatal.6b02726
  9. L. Mei, H. Zhao, and B. Lu, "Ultra-efficient photocatalytic properties in porous tungsten oxide/graphene film under visible light irradiation", Adv. Sci., 12, 1500116 (2015).
  10. A. A. Ismail, M. Faisal, and A. Al-Haddad, "Mesoporous $WO_3$-graphene photocatalyst for photocatalytic degradation of Methylene Blue dye under visible light illumination", J. Environ. Sci., 66, 328 (2018). https://doi.org/10.1016/j.jes.2017.05.001
  11. X. Li, S. Yang, J. Sun, P. He, X. Xu, and G. Ding, "Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis", Carbon, 78, 38 (2014). https://doi.org/10.1016/j.carbon.2014.06.034
  12. M. Dinari, M. M. Momeni, and M. Ahangarpour, "Efficient degradation of methylene blue dye over tungsten trioxide/multi-walled carbon nanotube system as a novel photocatalyst", Appl. Phys. A., 112, 1 (2016).
  13. A. Karuppasamy, "Electrochromism and photocatalysis in dendrite structured Ti : $WO_3$ thin films grown by sputtering", Appl. Surf. Sci., 359, 841 (2015). https://doi.org/10.1016/j.apsusc.2015.10.020
  14. G. Xi, B. Yue, J. Cao, and J. Ye, "$Fe_3O_4/WO_3$ hierarchical core-shell structure: High-performance and recyclable visible-light photocatalysis", Chem.: Eur. J., 17, 5145 (2011). https://doi.org/10.1002/chem.201002229
  15. Z. F. Huang, J. J. Zou, L. Pan, S. Wang, X. Zhang, and L. Wang, "Synergetic promotion on photoactivity and stability of $W_{18}O_{49}/TiO_2$ hybrid", Appl. Catal. B: Environ., 147, 167 (2014). https://doi.org/10.1016/j.apcatb.2013.08.038
  16. G. Palanisamy, K. Bhuvaneswari, G. Bharathi, D. Nataraj, and T. Pazhanivel, "Enhanced photocatalytic properties of ZnS-$WO_3$ nanosheet hybrid under visible light irradiation", ChemistrySelect, 32, 9422 (2018).
  17. K. E. Ahmed, D. H. Kuo, M. A. Zeleke, O. A. Zelekew, and A. K. Abay, "Synthesis of Sn-$WO_3/g-C_3N_4$ composites with surface activated oxygen for visible light degradation of dyes", J. Photochem. Photobiol., 369, 133 (2019). https://doi.org/10.1016/j.jphotochem.2018.10.027
  18. S. Chaiwichian, K. Wetchakun, W. Kangwansupamonkon, and N. Wetchakun, "Novel visible-light-driven $BiFeO_3-Bi_2WO_6$ nanocomposites toward degradation of dyes", J. Photochem. Photobiol. A, 349, 183 (2017). https://doi.org/10.1016/j.jphotochem.2017.09.034
  19. E. M. Ngigi, E. M. Kiarii, P. N. Nomngongo, and C. J. Ngila, "Application of Z-Scheme CdS $WO_3$ nanocomposite for photodegradation of ethylparaben under irradiation with visible light: A combined experimental and theoretical study", ChemistrySelect, 34, 9845 (2018).
  20. M. Visa, C. Bogatu, and A. Duta, "Tungsten oxide - fly ash oxide composites in adsorption and photocatalysis", J. Hazard. Mater., 289, 244 (2015). https://doi.org/10.1016/j.jhazmat.2015.01.053