Fig. 1. Word2Vec skip-gram model
Fig. 2. Convolution neural network with one convolution layer and one pooling layer
Fig. 3. wDNN configuration
Fig. 4. wCNN configuration
Fig. 5. Procedure of movie recommendation algorithm
Fig. 6. The model architecture of ensemble convolutional neural networks
Fig. 7. The user and movie convolution model
Table 1. MAEs of 10-fold cross validation test
Table 2. Results of pair-wise t-test of wDNN and wCNN
참고문헌
- B. S. Kang. (2017). The study of recommendation algorithm's predictive accuracy improvement using structural holes on trust-based social networks. Journal of Knowledge Information Technology and Systems, 12(1), 209-217. https://doi.org/10.34163/jkits.2017.12.1.019
- B. S. Kang. (2018). Improving Predictive Accuracy of User-based Collaborative Filtering Using Word2Vec. Journal of Knowledge Information Technology and Systems, 13(1), 169-176. https://doi.org/10.34163/jkits.2018.13.1.017
- B. Sarwar, G. Karypis, J. Konstan & J. Ried. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web, 285-295.
- T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado & J. Dean. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26, 3111-3119.
- J. M. Kim & J. H. Lee. (2017). Text document classification based on recurrent neural network using word2vec. Journal of Korean Institute of Intelligent Systems, 27(6), 560-565. https://doi.org/10.5391/JKIIS.2017.27.6.560
- D. W. Kim & M. W. Koo. (2017). Categorization of korean news articles based on convolutional neural networks using doc2vec and word2vec. Journal of Korean Institute of Information Scientists and Engineers, 44(7), 742-747.
- D. Y. Lee, J. C. Jo & H. S. Lim. (2017). User sentiment analysis on amazon fashion product review using word embedding. Journal of the Korean Convergence Society, 8(4), 1-8.
- B. Oren & K. Noam. (2016. Sep). Item2vec: neural item embedding for collaborative filtering. 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing, 1-6.
- G. S. Jeon, S. G. Kong & Y. S. Cho. (2017). Word2Vec based collaborative filtering for movie Rating prediction. Korea Software Congress 2017, 844-846.
- J. K. Sung, S. M. Park, S. Y. Sin, Y. B. Kim & Y. G. Kim. (2017). Deep learning based image retrieval system for o2o shopping mall platform service design, Journal of Digital Convergence, 15(7), 213-222. https://doi.org/10.14400/JDC.2017.15.4.213
- S. J. Baek. (2017). Multi-document summarization method based on semantic relationship using VAE, Journal of Digital Convergence, 15(12), 341-347. https://doi.org/10.14400/JDC.2017.15.12.341
- R. Devooght & H. Bersini. (2016). Collaborative filtering with recurrent neural networks. arXiv preprint arXiv:1608.07400.
- M. H. Kwon, S. E. Kong & Y. S. Choi. (2018). Improving recurrent neural network based recommendations by utilizing embedding matrix. Journal of KIISE, 45(7), 659-666. https://doi.org/10.5626/JOK.2018.45.7.659
- B. S. Kang. (2018). Improving accuracy of movie recommender system using word2vec and deep neural networks. Journal of Knowledge Information Technology and Systems, 13(5), 561-568. https://doi.org/10.34163/jkits.2018.13.5.006
- B. T. Zhang. (2015). Deep hypernetwork models. Communications of the Korean Institute of Information Scientists and Engineers, 33(8), 11-24.
- M. K. Kwon & H. S. Yang. (2017). Performance improvement of object recognition system in broadcast media using hierarchical CNN, Journal of Digital Convergence, 15(3), 201-209. https://doi.org/10.14400/JDC.2017.15.3.201
- G. Guo, J. Zhang & N. Yorke-Smith. (2013). A novel bayesian similarity measure for recommender systems. Proceedings of the 23th International Joint Conference on Artificial Intelligence, 2619-2625.
- Y. LeCun, L. Bottou, Y. Bengio & P. Haffner. (1998). Gradient-based learning applied to document recognition. Proceedings of the Institute of Electrical and Electronics Engineers, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
- Gensim. (2017). https://radimrehurek.com/gensim/.
- Librec. (2016). http://www.librec.net/datasets.html.