DOI QR코드

DOI QR Code

Development of an RNA Expression Platform Controlled by Viral Internal Ribosome Entry Sites

  • Ko, Hae Li (Department of Biotechnology, The Catholic University of Korea) ;
  • Park, Hyo-Jung (Department of Biotechnology, The Catholic University of Korea) ;
  • Kim, Jihye (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Kim, Ha (Cancer Imaging Center, Seoul National University Hospital) ;
  • Youn, Hyewon (Cancer Imaging Center, Seoul National University Hospital) ;
  • Nam, Jae-Hwan (Department of Biotechnology, The Catholic University of Korea)
  • Received : 2018.11.14
  • Accepted : 2018.11.26
  • Published : 2019.01.28

Abstract

Since 1990, many nucleic acid expression platforms consisting of DNA or RNA have been developed. However, although RNA expression platforms have been relatively neglected, several such platforms capped at the 5' end of RNA by an anti-reverse cap analog have now been developed. At the same time, the capping reaction is a bottleneck in the production of such platforms, with high cost and low efficiency. Here, we investigated several viral and eukaryotic internal ribosome entry sites (IRESs) to develop an optimal RNA expression platform, because IRES-dependent translation does not require a capping step. RNA expression platforms constructed with IRESs from the 5' untranslated regions of the encephalomyocarditis virus (EMCV) and the intergenic region of the cricket paralysis virus (CrPV) showed sufficient expression efficiency compared with cap-dependent RNA expression platforms. However, eukaryotic IRESs exhibited a lower viral IRES expression efficiency. Interestingly, the addition of a poly(A) sequence to the 5' end of the coxsackievirus B3 (CVB3) IRES (pMA-CVB3) increased the expression level compared with the CVB3 IRES without poly(A) (pCVB3). Therefore, we developed two multiexpression platforms (termed pMA-CVB3-EMCV and pCrPV-EMCV) by combining the IRESs of CVB3, CrPV, and EMCV in a single-RNA backbone. The pMA-CVB3-EMCV-derived RNA platform showed the highest expression level. Moreover, it clearly exhibited expression in mouse muscles in vivo. These RNA expression platforms prepared using viral IRESs will be useful in developing potential RNA-based prophylactic or therapeutic vaccines, because they have better expression efficiency and do not need a capping step.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare, NRF

References

  1. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. 1990. Direct gene transfer into mouse muscle in vivo. Science 247: 1465-1468. https://doi.org/10.1126/science.1690918
  2. Marc MA, Dominguez-Alvarez E, Gamazo C. 2015. Nucleic acid vaccination strategies against infectious diseases. Expert. Opin. Drug Deliv. 12: 1851-1865. https://doi.org/10.1517/17425247.2015.1077559
  3. Sahin U, Kariko K, Tureci O. 2014. mRNA-based therapeutics-developing a new class of drugs. Nat. Rev. Drug Discov. 13: 759-780. https://doi.org/10.1038/nrd4278
  4. Kallen KJ, Thess A. 2014. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther. Adv. Vaccines 2: 10-31. https://doi.org/10.1177/2051013613508729
  5. Probst J, Fotin-Mleczek M, Schlake T, Thess A, Kramps T, Kallen KJ. 2012. pp. 223-245. Messenger RNA vaccines. In: Thalhamer J, Weiss R, Scheiblhofer S, editors. Gene vaccines. Vienna: Springer Verlag Wein.
  6. Kallen KJ, Heidenreich R, Schnee M, Petsch B, Schlake T, Thess A, et al. 2013. A novel, disruptive vaccination technology: self-adjuvanted RNActive vaccines. Hum. Vaccin. Immunother. 9: 2263-2276. https://doi.org/10.4161/hv.25181
  7. Fotin-Mleczek M, Zanzinger K, Heidenreich R, Lorenz C, Thess A, Duchardt KM, et al. 2012. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J. Gene Med. 14: 428-439. https://doi.org/10.1002/jgm.2605
  8. Geall AJ, Mandl CW, Ulmer JB. 2013. RNA: The new revolution in nucleic acid vaccines. Semin. Immunol. 25: 152-159. https://doi.org/10.1016/j.smim.2013.05.001
  9. Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. 2012. Developing mRNA-vaccine technologies. RNA Biol. 9: 1319-1330. https://doi.org/10.4161/rna.22269
  10. Iavarone C, O'Hagan DT, Yu D, Delahaye NF, Ulmer JB. 2017. Mechanism of action of mRNA-based vaccines. Expert. Rev. Vaccines 16: 871-881. https://doi.org/10.1080/14760584.2017.1355245
  11. Akhrymuk I, Kulemzin SV, Frolova EI. 2012. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. J. Virol. 86: 7180-7191. https://doi.org/10.1128/JVI.00541-12
  12. Hollidge BS, Weiss SR, Soldan SS. 2011. The role of interferon antagonist, non-structural proteins in the pathogenesis and emergence of arboviruses. Viruses 3: 629-658. https://doi.org/10.3390/v3060629
  13. Blakqori G, Delhaye S, Habjan M, Blair CD, Sanchez-Vargas I, Olson KE, et al. 2007. La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts. J. Virol. 81: 4991-4999. https://doi.org/10.1128/JVI.01933-06
  14. Ngoi SM, Chien AC, Lee CG. 2004. Exploiting internal ribosome entry sites in gene therapy vector design. Curr. Gene Ther. 4: 15-31. https://doi.org/10.2174/1566523044578095
  15. Mailliot J, Martin F. 2018. Viral internal ribosomal entry sites: four classes for one goal. Wiley Interdiscip Rev. RNA 9: e1458. https://doi.org/10.1002/wrna.1458
  16. Yamamoto H, Unbehaun A, Spahn CMT. 2017. Ribosomal chamber music: toward an understanding of IRES mechanisms. Trends Biochem. Sci. 42: 655-668. https://doi.org/10.1016/j.tibs.2017.06.002
  17. Pelletier J, Sonenberg N. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334: 320-325. https://doi.org/10.1038/334320a0
  18. Kieft JS. 2008. Viral IRES RNA structures and ribosome interactions. Trends Biochem. Sci. 33: 274-283. https://doi.org/10.1016/j.tibs.2008.04.007
  19. Murray J, Savva CG, Shin BS, Dever TE, Ramakrishnan V, Fernandez IS. 2016. Structural characterization of ribosome recruitment and translocation by type IV IRES. Elife 5: e13567. https://doi.org/10.7554/eLife.13567
  20. Cho A, Seok SH. 2013. Ethical guidelines for use of experimental animals in biomedical research. J. Bacteriol. Virol. 43: 18-26. https://doi.org/10.4167/jbv.2013.43.1.18
  21. Wong ET, Ngoi SM, Lee CG. 2002. Improved co-expression of multiple genes in vectors containing internal ribosome entry sites (IRESes) from human genes. Gene Ther. 9: 337-344. https://doi.org/10.1038/sj.gt.3301667
  22. Chiang PW, Carpenter LE, Hagerman PJ. 2001. The 5'-untranslated region of the FMR1 message facilitates translation by internal ribosome entry. J. Biol. Chem. 276: 37916-37921. https://doi.org/10.1074/jbc.M105584200
  23. Filley CM, Brown MS, Onderko K, Ray M, Bennett RE, Berry-Kravis E, et al. 2015. White matter disease and cognitive impairment in FMR1 premutation carriers. Neurology 84: 2146-2152. https://doi.org/10.1212/WNL.0000000000001612
  24. Schiavi A, Hudder A, Werner R. 1999. Connexin43 mRNA contains a functional internal ribosome entry site. FEBS Lett. 464: 118-122. https://doi.org/10.1016/S0014-5793(99)01699-3
  25. Bernstein J, Sella O, Le SY, Elroy-Stein O. 1997. PDGF2/c-sis mRNA leader contains a differentiation-linked internal ribosomal entry site (D-IRES). J. Biol. Chem. 272: 9356-9362. https://doi.org/10.1074/jbc.272.14.9356
  26. Huez I, Creancier L, Audigier S, Gensac MC, Prats AC, Prats H, et al. 1998. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol. Cell Biol. 18: 6178-6190. https://doi.org/10.1128/MCB.18.11.6178
  27. Goodfellow I. 2011. The genome-linked protein VPg of vertebrate viruses-a multifaceted protein. Curr. Opin. Virol. 1: 355-362. https://doi.org/10.1016/j.coviro.2011.09.003
  28. Sean P, Semler BL. 2008. Coxsackievirus B RNA replication: lessons from poliovirus. Curr. Top. Microbiol. Immunol. 323: 89-121.
  29. Langereis MA, Feng Q, Nelissen FH, Virgen-Slane R, van der Heden van Noort GJ, Maciejewski S, et al. 2014. Modification of picornavirus genomic RNA using 'click' chemistry shows that unlinking of the VPg peptide is dispensable for translation and replication of the incoming viral RNA. Nucleic Acids Res. 42: 2473-2482. https://doi.org/10.1093/nar/gkt1162
  30. Skold AE, van Beek JJ, Sittig SP, Bakdash G, Tel J, Schreibelt G, et al. 2015. Protamine-stabilized RNA as an ex vivo stimulant of primary human dendritic cell subsets. Cancer Immunol. Immunother. 64: 1461-1473. https://doi.org/10.1007/s00262-015-1746-9
  31. Scheel B, Teufel R, Probst J, Carralot JP, Geginat J, Radsak M, et al. 2005. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur. J. Immunol. 35: 1557-1566. https://doi.org/10.1002/eji.200425656
  32. Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, et al. 2012. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol. 30: 1210-1216. https://doi.org/10.1038/nbt.2436
  33. Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, et al. 2017. Modified mRNA vaccines protect against Zika virus infection. Cell 169: 176.
  34. Avogadri F, Merghoub T, Maughan MF, Hirschhorn-Cymerman D, Morris J, Ritter E, et al. 2010. Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity. PLoS One 5: e12670. https://doi.org/10.1371/journal.pone.0012670
  35. Seregin SS, Appledorn DM, McBride AJ, Schuldt NJ, Aldhamen YA, Voss T, et al. 2009. Transient pretreatment with glucocorticoid ablates innate toxicity of systemically delivered adenoviral vectors without reducing efficacy. Mol. Ther. 17: 685-696. https://doi.org/10.1038/mt.2008.297
  36. Pyankov OV, Bodnev SA, Pyankova OG, Solodkyi VV, Pyankov SA, Setoh YX, et al. 2015. A Kunjin replicon virus-like particle vaccine provides protection against Ebola virus infection in nonhuman primates. J. Infect. Dis. 212(Suppl 2): S368-S371. https://doi.org/10.1093/infdis/jiv019
  37. Schnee M, Vogel AB, Voss D, Petsch B, Baumhof P, Kramps T, et al. 2016. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl. Trop. Dis. 10: e0004746. https://doi.org/10.1371/journal.pntd.0004746
  38. Brito LA, Chan M, Shaw CA, Hekele A, Carsillo T, Schaefer M, et al. 2014. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther. 22: 2118-2129. https://doi.org/10.1038/mt.2014.133
  39. Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, et al. 2017. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25: 1316-1327. https://doi.org/10.1016/j.ymthe.2017.03.035
  40. Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, et al. 2017. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390: 1511-1520. https://doi.org/10.1016/S0140-6736(17)31665-3
  41. Youn H, Chung JK. 2015. Modified mRNA as an a lternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert. Opin. Biol. Ther. 15: 1337-1348. https://doi.org/10.1517/14712598.2015.1057563
  42. Diken M, Kranz LM, Kreiter S, Sahin U. 2017. mRNA: A versatile molecule for cancer vaccines. Curr. Issues Mol. Biol. 22: 113-128.
  43. Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. 2016. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534: 396-401. https://doi.org/10.1038/nature18300
  44. Dickson KA, Haigis MC, Raines RT. 2005. Ribonuclease inhibitor: structure and function. Prog. Nucleic Acid. Res Mol. Biol. 80: 349-374. https://doi.org/10.1016/S0079-6603(05)80009-1
  45. Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, et al. 2012. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl. Acad. Sci. USA 109: 14604-14609. https://doi.org/10.1073/pnas.1209367109
  46. Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW. 2001. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. 29: 3882-3891. https://doi.org/10.1093/nar/29.18.3882
  47. Leppek K, Das R, Barna M. 2018. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19: 158-174. https://doi.org/10.1038/nrm.2017.103
  48. Simoes EA, Sarnow P. 1991. An RNA hairpin at the extreme 5' end of the poliovirus RNA genome modulates viral translation in human cells. J. Virol. 65: 913-921. https://doi.org/10.1128/JVI.65.2.913-921.1991
  49. Andino R, Rieckhof GE, Baltimore D. 1990. A functional ribonucleoprotein complex forms around the 5' end of poliovirus RNA. Cell 63: 369-380. https://doi.org/10.1016/0092-8674(90)90170-J
  50. Herold J, Andino R. 2007. Poliovirus requires a precise 5' end for efficient positive-strand RNA synthesis. J. Virol. 74: 6394-400. https://doi.org/10.1128/JVI.74.14.6394-6400.2000

Cited by

  1. Cricket paralysis virus internal ribosome entry site-derived RNA promotes conventional vaccine efficacy by enhancing a balanced Th1/Th2 response vol.37, pp.36, 2019, https://doi.org/10.1016/j.vaccine.2019.07.070
  2. Comprehensive Analysis of the Safety Profile of a Single-Stranded RNA Nano-Structure Adjuvant vol.11, pp.9, 2019, https://doi.org/10.3390/pharmaceutics11090464
  3. MERS-CoV Spike Protein Vaccine and Inactivated Influenza Vaccine Formulated with Single Strand RNA Adjuvant Induce T-Cell Activation through Intranasal Immunization in Mice vol.12, pp.5, 2020, https://doi.org/10.3390/pharmaceutics12050441
  4. Evaluation of glycoprotein E subunit and live attenuated varicella‐zoster virus vaccines formulated with a single‐strand RNA‐based adjuvant vol.8, pp.2, 2019, https://doi.org/10.1002/iid3.297
  5. Nanoformulated Single‐Stranded RNA‐Based Adjuvant with a Coordinative Amphiphile as an Effective Stabilizer: Inducing Humoral Immune Response by Activation of Antigen‐Presenting Cell vol.132, pp.28, 2020, https://doi.org/10.1002/ange.202002979
  6. Nanoformulated Single‐Stranded RNA‐Based Adjuvant with a Coordinative Amphiphile as an Effective Stabilizer: Inducing Humoral Immune Response by Activation of Antigen‐Presenting Cell vol.59, pp.28, 2019, https://doi.org/10.1002/anie.202002979
  7. Nucleic Acid-Based Approaches for Tumor Therapy vol.9, pp.9, 2020, https://doi.org/10.3390/cells9092061