DOI QR코드

DOI QR Code

A Role of YlBud8 in the Regulation of Cell Separation in the Yeast Yarrowia lipolytica

  • Li, Yun-Qing (Department of Pathogenic Biology, Jining Medical University) ;
  • Xue, Qing-Jie (Department of Pathogenic Biology, Jining Medical University) ;
  • Yang, Yuan-Yuan (Department of Pathogenic Biology, Jining Medical University) ;
  • Wang, Hui (Department of Pathogenic Biology, Jining Medical University) ;
  • Li, Xiu-Zhen (Department of Pathogenic Biology, Jining Medical University)
  • Received : 2018.07.24
  • Accepted : 2018.10.20
  • Published : 2019.01.28

Abstract

The spatial landmark protein Bud8 plays a crucial role in bipolar budding in the budding yeast Saccharomyces cerevisiae. The unconventional yeast Yarrowia lipolytica can also bud in a bipolar pattern, but is evolutionarily distant from S. cerevisiae. It encodes the protein YALI0F12738p, which shares the highest amino acid sequence homology with S. cerevisiae Bud8, sharing a conserved transmembrane domain at the C-terminus. Therefore, we named it YlBud8. Deletion of YlBud8 in Y. lipolytica causes cellular separation defects, resulting in budded cells remaining linked with one another as cell chains or multiple buds from a single cell, which suggests that YlBud8 may play an important role in cell separation, which is distinct from the function of Bud8 in S. cerevisiae. We also show that the YlBud8-GFP fusion protein is located at the cell membrane and enriched in the bud cortex, which would be consistent with a role in the regulation of cell separation. The coiled-coil domain at the N-terminus of YlBud8 is important to the correct localization and function of YlBud8, as truncated proteins that do not contain the coiled-coil domain cannot rescue the defects observed in $Ylbud8{\Delta}$. This finding suggests that a new signaling pathway controlled by YlBud8 via regulation of cell separation may exist in Y. lipolytica.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Jining Medical University

References

  1. Martin SG, Chang F. 2003. Cell polarity: a new mod(e) of anchoring. Curr. Biol. 13: R711-713. https://doi.org/10.1016/j.cub.2003.08.046
  2. Drubin DG, Nelson WJ. 1996. Origins of cell polarity. Cell 84: 335-344. https://doi.org/10.1016/S0092-8674(00)81278-7
  3. Schenkman LR, Caruso C, Page N, Pringle JR. 2002. The role of cell cycle regulated expression in the localization of spatial landmark proteins in yeast. J. Cell Biol. 156: 829-841. https://doi.org/10.1083/jcb.200107041
  4. Bi E, Park HO. 2012. Cell polarization and cytokinesis in budding yeast. Genetics 191: 347-387. https://doi.org/10.1534/genetics.111.132886
  5. Pollard TD. 2010. Mechanics of cytokinesis in eukaryotes. Curr. Opin. Cell Biol. 22: 50-56. https://doi.org/10.1016/j.ceb.2009.11.010
  6. Barr FA, Gruneberg U. 2007. Cytokinesis: placing and making the final cut. Cell 131: 847-860. https://doi.org/10.1016/j.cell.2007.11.011
  7. Chant J. 1999. Cell polarity in yeast. Annu. Rev. Cell Dev. Biol. 15: 365-391. https://doi.org/10.1146/annurev.cellbio.15.1.365
  8. Li N, Michael S. 2001. A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol. Bio. Cell 12: 2147-2170. https://doi.org/10.1091/mbc.12.7.2147
  9. Park HO, Bi E. 2007. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol. Mol. Biol. Rev. 71: 48-96. https://doi.org/10.1128/MMBR.00028-06
  10. Park HO, Bi E, Pringle JR, Herskowitz I. 1997. Two active states of the Ras-related Bud1/Rsr1 protein bind to different effectors to determine yeast cell polarity. Proc. Natl. Acad. Sci. USA 94: 4463-4468. https://doi.org/10.1073/pnas.94.9.4463
  11. Kang PJ, Beven L, Hariharan S, Park HO. 2010. The Rsr1/Bud1 GTPase interacts with itself and the Cdc42 GTPase during bud-site selection and polarity establishment in budding yeast. Mol. Biol. Cell 21: 3007-3016. https://doi.org/10.1091/mbc.e10-03-0232
  12. Lee ME, Lo WC, Miller KE, Chou CS, Park HO. 2015. Regulation of Cdc42 polarization by the Rsr1 GTPase and Rga1, a Cdc42 GTPase-activating protein, in budding yeast. J. Cell Sci. 128: 2106-2117. https://doi.org/10.1242/jcs.166538
  13. Basu S, Vadaie N, Prabhakar A, Li B, Adhikari H, Pitoniak A, et al. 2016. Spatial landmarks regulate a Cdc42-dependent MAPK pathway to control differentiation and the response to positional compromise. Proc. Natl. Acad. Sci. USA 113: 2019-2028. https://doi.org/10.1073/pnas.1522679113
  14. Herrero AB, Lopez MC, Fernandez-Lago L, Dominguez A. 1999. Candida albicans and Yarrowia lipolytica as alternative models for analysing budding patterns and germ tube formation in dimorphic fungi. Microbiology 145: 2727-2737. https://doi.org/10.1099/00221287-145-10-2727
  15. Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR. 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077-1090. https://doi.org/10.1016/0092-8674(92)90079-R
  16. Veses VN, Gow NA. 2008. Pseudohypha budding patetrns of Candida albicans. Med. Mycol. 47: 268-275. https://doi.org/10.1080/13693780802245474
  17. Nicaud JM. 2012. Yarrowia lipolytica. Yeast 29: 409-418. https://doi.org/10.1002/yea.2921
  18. Kang PJ, Angerman E, Nakashima K, Pringle JR, Park, HO. 2004. Interactions among Rax1p, Rax2p, Bud8p, and Bud9p in marking cortical sites for bipolar bud-site selection in yeast. Mol. Biol. Cell 15: 5145-5157. https://doi.org/10.1091/mbc.e04-07-0600
  19. Kato Y, Kawasaki H, Ohyama Y, Morishita T, Iwasaki H, Kokubo T, et al. 2011. Cell polarity in Saccharomyces cerevisiae depends on proper localization of the Bud9 landmark protein by the EKC/KEOPS complex. Genetics 188: 871-882. https://doi.org/10.1534/genetics.111.128231
  20. Harkins HA, Page N, Schenkman LR, Virgilio DV, Shaw S, Bussey H, et al. 2001. Bud8 and Bud9, proteins that may mark the sites for bipolar budding in yeast. Mol. Bio. Cell 12: 2497-2518. https://doi.org/10.1091/mbc.12.8.2497
  21. Li YQ, Li M, Zhao XF, Gao XD. 2014. A role for the Rap GTPase YlRsr1 in cellular morphogenesis and the involvement of YlRsr1 and the Ras GTPase YlRas2 in bud site selection in the dimorphic yeast Yarrowia lipolytica. Eukaryot. Cell 13: 580-590. https://doi.org/10.1128/EC.00342-13
  22. Richard M, Quijano RR, Bezzate S, Bordon-Pallier F, Gaillardin C. 2001. Tagging morphogenetic genes by insertional mutagenesis in the yeast Yarrowia lipolytica. J. Bacteriol. 183: 3098-3107. https://doi.org/10.1128/JB.183.10.3098-3107.2001
  23. Zhao XF, Li M, Li YQ, Chen XD, Gao XD. 2013. The TEA/ATTS transcription factor YlTec1p represses the yeast-hypha transition in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Res. 13: 50-61. https://doi.org/10.1111/j.1567-1364.2012.12008.x
  24. Li M, Li YQ, Zhao XF, Gao XD. 2014. Roles of the three Ras proteins in the regulation of dimorphic transition in the yeast Yarrowia lipolytica. FEMS Yeast Res. 14: 451-463. https://doi.org/10.1111/1567-1364.12129
  25. Lupas A. 1996. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21: 375-382. https://doi.org/10.1016/0968-0004(96)10052-9
  26. Taheri N, Kohler T, Braus GH, Mosch HU. 2000. Asymmetrically localized Bud8p and Bud9p proteins control yeast cell polarity and development. EMBO J. 19: 6686-6696. https://doi.org/10.1093/emboj/19.24.6686
  27. Krappmann AB, Taheri N, Heinrich M, Mosch HU. 2007. Distinct domains of yeast cortical tag proteins Bud8p and Bud9p confer polar localization and functionality. Mol. Biol. Cell. 18: 3323-3339. https://doi.org/10.1091/mbc.e06-10-0899
  28. Movahed E, Munusamy K, Tan GM, Looi CY, Tay ST, Wong WF. 2015. Genome-wide transcription study of Cryptococcus neoformans H99 clinical strain versus environmental strains. PLoS One 10: e0137457. https://doi.org/10.1371/journal.pone.0137457
  29. Liu J, Rost B. 2001. Comparing function and structure between entire proteomes. Protein Sci. 10: 1970-1979. https://doi.org/10.1110/ps.10101
  30. Surkont J, Pereira-Leal JB. 2015. Evolutionary patterns in coiled-coils. Genome Biol. Evol. 7: 545-556. https://doi.org/10.1093/gbe/evv007
  31. Zhang H, Chen J, Wang Y, Peng L, Dong X, Lu Y, et al. 2009. A computationally guided protein-interaction screen uncovers coiled-coil interactions involved in vesicular trafficking. J. Mol. Biol. 392: 228-241. https://doi.org/10.1016/j.jmb.2009.07.006
  32. Munro S. 2011. The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harb. Perspect. Biol. 3: 1-14. https://doi.org/10.1101/cshperspect.a005256