• Title/Summary/Keyword: RNA expression platform

Search Result 29, Processing Time 0.026 seconds

Development of an RNA Expression Platform Controlled by Viral Internal Ribosome Entry Sites

  • Ko, Hae Li;Park, Hyo-Jung;Kim, Jihye;Kim, Ha;Youn, Hyewon;Nam, Jae-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.127-140
    • /
    • 2019
  • Since 1990, many nucleic acid expression platforms consisting of DNA or RNA have been developed. However, although RNA expression platforms have been relatively neglected, several such platforms capped at the 5' end of RNA by an anti-reverse cap analog have now been developed. At the same time, the capping reaction is a bottleneck in the production of such platforms, with high cost and low efficiency. Here, we investigated several viral and eukaryotic internal ribosome entry sites (IRESs) to develop an optimal RNA expression platform, because IRES-dependent translation does not require a capping step. RNA expression platforms constructed with IRESs from the 5' untranslated regions of the encephalomyocarditis virus (EMCV) and the intergenic region of the cricket paralysis virus (CrPV) showed sufficient expression efficiency compared with cap-dependent RNA expression platforms. However, eukaryotic IRESs exhibited a lower viral IRES expression efficiency. Interestingly, the addition of a poly(A) sequence to the 5' end of the coxsackievirus B3 (CVB3) IRES (pMA-CVB3) increased the expression level compared with the CVB3 IRES without poly(A) (pCVB3). Therefore, we developed two multiexpression platforms (termed pMA-CVB3-EMCV and pCrPV-EMCV) by combining the IRESs of CVB3, CrPV, and EMCV in a single-RNA backbone. The pMA-CVB3-EMCV-derived RNA platform showed the highest expression level. Moreover, it clearly exhibited expression in mouse muscles in vivo. These RNA expression platforms prepared using viral IRESs will be useful in developing potential RNA-based prophylactic or therapeutic vaccines, because they have better expression efficiency and do not need a capping step.

How are Bayesian and Non-Parametric Methods Doing a Great Job in RNA-Seq Differential Expression Analysis? : A Review

  • Oh, Sunghee
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.181-199
    • /
    • 2015
  • In a short history, RNA-seq data have established a revolutionary tool to directly decode various scenarios occurring on whole genome-wide expression profiles in regards with differential expression at gene, transcript, isoform, and exon specific quantification, genetic and genomic mutations, and etc. RNA-seq technique has been rapidly replacing arrays with seq-based platform experimental settings by revealing a couple of advantages such as identification of alternative splicing and allelic specific expression. The remarkable characteristics of high-throughput large-scale expression profile in RNA-seq are lied on expression levels of read counts, structure of correlated samples and genes, larger number of genes compared to sample size, different sampling rates, inevitable systematic RNA-seq biases, and etc. In this study, we will comprehensively review how robust Bayesian and non-parametric methods have a better performance than classical statistical approaches by explicitly incorporating such intrinsic RNA-seq specific features with flexible and more appropriate assumptions and distributions in practice.

Construction of an avian hepatitis E virus replicon expressing heterologous genes and evaluation of its potential as an RNA vaccine platform

  • Moon, Hyun-Woo;Sung, Haan Woo;Park, Jeongho;Kwon, Hyuk Moo
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.2
    • /
    • pp.11.1-11.5
    • /
    • 2021
  • To evaluate avian hepatitis E virus (aHEV) as an RNA vaccine platform, ORF2 of aHEV was replaced by heterologous genes, such as eGFP and HA-tag, in aHEV infectious cDNA clones. eGFP and HA-tag replicons were expressed in LMH cells. To confirm expression of the heterologous protein, ORF2 was replaced with the antigenic S1 gene of IBV. The IBVS1 replicon was expressed in LMH cells. To our knowledge, this is the first investigation showing the potential as a RNA vaccine platform using an aHEV. In the future, it may be used in the development of RNA vaccines against various pathogens.

Differentially Expressed Genes by Inhibition of C-terminal Src Kinase by siRNA in Human Vascular Smooth Muscle Cells and Their Association with Blood Pressure

  • Hong, Kyung-Won;Shin, Young-Bin;Kim, Koan-Hoi;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.102-113
    • /
    • 2011
  • C-terminal SRC kinase (CSK) is a ubiquitously expressed, cytosolic enzyme that phosphorylates and inactivates several SRC family protein tyrosine kinases. Recent genomewide association studies have implicated CSK in the regulation of blood pressure. The current study aim is to determine the blood pressure association of the genes regulated by CSK down-regulation. The CSK mRNA expression was downregulated in vascular smooth muscle cells using small interfering RNA (siRNA). CSK mRNA levels fell by 90% in cells that were treated with CSK siRNA; the RNA from these cells was examined by microarray using the Illumina HumanRef-8 v3 platform, which comprises 24,526 reference mRNA probes. On treatment with CSK siRNA, 19 genes were downregulated by more than 2-fold and 13 genes were upregulated by more than 2-fold. Three (CANX, SLC30A7, and HMOX1) of them revealed more than 3 fold differential expression. Interestingly, the HMOX1 SNPs were associated with diastolic blood pressure in the 7551 Koreans using Korea Association REsource data, and the result was supported by the other reports that HMOX1 linked to blood vessel maintenance. Among the remaining 29 differentially expressed genes, seven (SSBP1, CDH2, YWHAE, ME2, PFTK1, G3BP2, and TUFT1) revealed association with both systolic and diastolic blood pressures. The CDH2 gene was linked to blood pressures. Conclusively, we identified 32 differentially expressed genes which were regulated by CSK reduction, and two (HOMX1 and CDH2) of them might influence the blood pressure regulation through CSK pathway.

Characterization of the MicroRNA Expression Profile of Cervical Squamous Cell Carcinoma Metastases

  • Ding, Hui;Wu, Yi-Lin;Wang, Ying-Xia;Zhu, Fu-Fan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1675-1679
    • /
    • 2014
  • Objectives: MicroRNAs (miRNAs) are important regulators of many physiological and pathological processes, including tumorigenesis and metastasis. In this study, we sought to determine the underlying molecular mechanisms of metastatic cervical carcinoma by performing miRNA profiling. Methods: Tissue samples were collected from ten cervical squamous cancer patients who underwent hysterectomy and pelvic lymph node (PLN) dissection in our hospital, including four PLN-positive (metastatic) cases and six PLN-negative (non-metastatic) cases. A miRNA microarray platform with 1223 probes was used to determine the miRNA expression profiles of these two tissue types and case groups. MiRNAs having at least 4-fold differential expression between PLN-positive and PLN-negative cervical cancer tissues were bioinformatically analyzed for target gene prediction. MiRNAs with tumor-associated target genes were validated by quantitative reverse transcription-polymerase chain reaction (RT-PCR). Results: Thirty-nine miRNAs were differentially expressed (>4-fold) between the PLN-positive and PLN-negative groups, of which, 22 were up-regulated and 17 were down-regulated. Sixty-nine percent of the miRNAs (27/39) had tumor-associated target genes, and the expression levels of six of those (miR-126, miR-96, miR-144, miR-657, miR-490-5p, and miR-323-3p) were confirmed by quantitative (q)RT-PCR. Conclusions: Six MiRNAs with predicted tumor-associated target genes encoding proteins that are known to be involved in cell adhesion, cytoskeletal remodeling, cell proliferation, cell migration, and apoptosis were identified. These findings suggest that a panel of miRNAs may regulate multiple and various steps of the metastasis cascade by targeting metastasis-associated genes. Since these six miRNAs are predicted to target tumor-associated genes, it is likely that they contribute to the metastatic potential of cervical cancer and may aid in prognosis or molecular therapy.

Sequencing and Characterization of Divergent Marbling Levels in the Beef Cattle (Longissimus dorsi Muscle) Transcriptome

  • Chen, Dong;Li, Wufeng;Du, Min;Wu, Meng;Cao, Binghai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.158-165
    • /
    • 2015
  • Marbling is an important trait regarding the quality of beef. Analysis of beef cattle transcriptome and its expression profile data are essential to extend the genetic information resources and would support further studies on beef cattle. RNA sequencing was performed in beef cattle using the Illumina High-Seq2000 platform. Approximately 251.58 million clean reads were generated from a high marbling (H) group and low marbling (L) group. Approximately 80.12% of the 19,994 bovine genes (protein coding) were detected in all samples, and 749 genes exhibited differential expression between the H and L groups based on fold change (>1.5-fold, p<0.05). Multiple gene ontology terms and biological pathways were found significantly enriched among the differentially expressed genes. The transcriptome data will facilitate future functional studies on marbling formation in beef cattle and may be applied to improve breeding programs for cattle and closely related mammals.

Tra2${\alpha}$ and hnRNP K might be Functional Partners of Rbm for Regulation of RNA Processes during Spermatogenesis

  • Lee, Jungmin;Kim, Euisu;Jang, Sung Key;Rhee, Kunsoo
    • Animal cells and systems
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 2004
  • Rbm is a male infertility gene located in the AZFb region of the Y chromosome. Expression pattern of Rbm indicates that Rbm is critical for early phase of male germ cell development. It shares strong structural homology with hnRNP G, suggesting a function as an RNA processing factor. In order to gain a clue on the molecular mechanisms of Rbm on male germ cell development, we examined interactions of Rbm with selected proteins in yeast. The results revealed specific interactions between Rbm, hnRNP K and Tra2${\alpha}$. These results suggest that hnRNP K and Tra2${\alpha}$ may be functional partners of Rbm in male germ cells. We propose a model in which hnRNP K may playa role as a platform for Rbm and Tra2${\alpha}$.

MicroRNA super-resolution imaging in blood for Alzheimer's disease

  • Mirae Lee;Jiwon Woo;Sang Tae Kim;Minho Moon;Sang Yun Kim;Hanna Cho;Sujin Kim;Han-Kyeol Kim;Jeong-Yoon Park
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.190-195
    • /
    • 2023
  • We propose a novel blood biomarker detection method that uses miRNA super-resolution imaging to enable the early diagnosis of Alzheimer's disease (AD). Here, we report a single-molecule detection method for visualizing disease-specific miRNA in tissue from an AD mice model, and peripheral blood mononuclear cells (PBMCs) from AD patients. Using optimized Magnified Analysis of Proteome (MAPs), we confirmed that five miRNAs contribute to neurodegenerative disease in the brain hippocampi of 5XFAD and wild-type mice. We also assessed PBMCs isolated from the whole blood of AD patients and a healthy control group, and subsequently analyzed those samples using miRNA super-resolution imaging. We detected more miR-200a-3p expression in the cornu ammonis 1 and dentate gyrus regions of 3 month-old 5XFAD mice than in wild-type mice. Additionally, miRNA super-resolution imaging of blood provides AD diagnosis platform for studying miRNA regulation inside cells at the single molecule level. Our results present a potential liquid biopsy method that could improve the diagnosis of early stage AD and other diseases.

Gene Expression Profiling by RNA Sequencing in Mature/Immature Oocytes of Chicken (닭의 성숙/미성숙란에서 RNA Sequencing을 이용한 유전자 발현 양상 고찰)

  • Kang, Kyung-Soo;Jang, Hyun-Jun;Park, Mi Na;Choi, Jung-Woo;Chung, Won-Hyong;Heo, Kang-Nyeong;Choe, Chang-Yong;Kim, Young-Joo;Lee, Si-Woo;Cho, Eun-Seok;Kim, Namshin;Kim, Tae-Hun;Han, Jae-Yong;Lee, Kyung-Tai
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.287-296
    • /
    • 2014
  • Chicken eggs undergo various physiological changes during egg maturation. To study genes associated with the egg maturation in pre-ovulation (immature) and post-ovulation (mature), we compared gene expression patterns between in the immature egg and mature egg using RNA sequencing data. Mature and immature eggs were obtained from a Heuksaek Jaerae-jong of Korean native chicken. Total RNAs obtained from the eggs were sequenced by Illumina HiSeq 2000 platform, and the generated sequence reads were mapped to Galgal4 reference sequence assembly using Tuxedo Protocol. From the comparison of the RNA sequencing data, 315 genes were differentially expressed between mature and immature eggs, and 46 genes were only detected in immature egg. Further gene ontology (GO) analysis was performed for the differentially expressed genes using DAVID, showing that 29 and 28 GO terms were independently clustered from mature and immature, respectively. From those clustered GO terms, genes related to germ cell development, sex differentiation and defense response to bacterium were mainly expressed in the immature egg, while genes related to regulation of apoptosis, steroid metabolic process and lipid homeostasis were mainly detected in the mature egg. Our results could contribute to understand egg maturation before and after ovulation, and develop genetic markers for improving egg quality and productivity.

Differential Effects of Acute and Chronic Exercise on Autophagy-related Gene Expression in Drosophila melanogaster (일회성 및 만성적 유산소운동이 초파리의 자가포식 관련 유전자 발현에 미치는 영향)

  • Kim, Hee Yeon;Kim, Hye Jin;Hwang, Ji Sun;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1180-1186
    • /
    • 2014
  • Autophagy, the lysosomal degradation pathway, is an intracellular recycling system that is necessary for the metabolic benefits of exercise and for producing lasting beneficial effects of exercise in various diseases. However, the most recent studies have only examined the effect of a single bout of exercise or resistance exercise on autophagic responses. To determine the differential effects of acute and chronic exercise on the expression of autophagy-related genes in D. melanogaster, white-eyed mutant D. melanogaster were assigned randomly to four groups: control, acute exercise, 2 hr chronic exercise, and 3 hr chronic exercise. The flies were exercised using a mechanized platform known as the Power Tower. Our results revealed that a single bout of exercise resulted in increased mRNA levels of the Atg8a gene (~20%, p<0.05). However, Atg1 and Atg6 mRNA expression were not induced by acute exercise. Transcript levels of Atg6 (~29%, p<0.05) related to the nucleation of autophagosomes were significantly induced by 2 hr of chronic exercise. However, this chronic exercise was not enough to increase Atg1 and Atg8a mRNA expression. On the other hand, 3 hr of exercise for 7 days significantly increased Atg1, Atg6, and Atg8a gene expression-about 57%, 37%, and 71%, respectively (p<0.05). These results suggest that a single bout of exercise is not enough to induce full activation of selected autophagy-related genes in D. melanogaster. Our results demonstrated that chronic regular exercise induced autophagy-related gene expression, suggesting that chronic regular exercise training might be required to activate autophagic responses important for producing beneficial effects of exercise in various diseases.