DOI QR코드

DOI QR Code

Identification of the Protein Function and Comparison of the Protein Expression Patterns of Wheat Addition Lines with Wild Rye Chromosomes

야생 호밀 염색체 첨가 밀 계통의 단백질 발현 양상 비교 분석

  • Lee, Dae Han (DAEYU Co., LTD) ;
  • Cho, Kun (Center for Research Equipment, Korean Basic Science Institute) ;
  • Woo, Sun Hee (Department of Crop Science, Chungbuk National University) ;
  • Cho, Seong-Woo (Department of Agronomy & Medicinal Plant Resources, Gyeongnam National University of Science and Technology)
  • 이대한 ((주)대유 마케팅부) ;
  • 조건 (한국기초과학지원연구원 연구장비운영부) ;
  • 우선희 (충북대학교 식물자원학과) ;
  • 조성우 (경남과학기술대학교 농학.한약자원학부)
  • Received : 2019.10.14
  • Accepted : 2019.10.25
  • Published : 2019.12.31

Abstract

The objectives of this study were to compare the protein expression patterns and degrees and identify the protein function of disomic addition lines (DAs) in Leymus racemosus, in order to improve the quality of wheat. Upon SDS-PAGE, L. racemosus showed two major protein bands whereas Chinese Spring (CS) had four major protein bands of high molecular weight. The DA(s) generally showed a similar protein expression pattern to that of CS, because 42 chromosomes were from CS and two chromosomes were from L. racemosus. However, only the L.r[J] line showed two protein bands of between 15 and 20 kDa, like L. racemosus. Image analysis based on 2-DE revealed that L.r[F] had the most upregulated protein spots, whereas L.r[N] had the least upregulated protein spots. For L.r[I], the frequency of the downregulated protein spots was higher than that of the upregulated ones. Using MALDI-TOF MS, the protein function was identified for each protein spot on the 2-DE polyacrylamide gel. The protein spots were classified into 11 groups according to protein function. Among the 11 groups, most protein spots of the DA(s) were identified as proteins related to metabolism. Additionally, unique protein spots of the DA(s) were related to abiotic stressors such as cold and heat. Those proteins are useful for improving wheat quality with resistance against abiotic stressors.

야생 호밀 염색체 첨가 계통의 단백질 발현 양상을 보통 밀과 비교함으로써 발현의 차이를 보이는 단백질의 기능을 동정함으로써 야생 호밀의 작물학적 유용 가치를 확인하고자 이 연구를 수행하였다. 전반적으로 야생 호밀 염색체 첨가계통은 보통 밀의 유전적 배경을 바탕으로 건조와 열에 대한 비생물학적 스트레스에 대한 저항성 관련 단백질과 바이러스성 병원균에 대한 저항성 관련 단백질 및 척박한 환경에 적응하는 생리대사에 관련된 단백질을 가지고 있는 것을 확인하였다. 하지만 아직 야생 호밀의 단백질 기능에 대한 정보와 작물학적 이용에 대한 연구가 미흡한 상태이다. 앞으로 국내 야생 호밀의 유용 유전자원으로써의 작물학적 이용과 기능에 대한 지속적인 연구가 필요하다.

Keywords

References

  1. Anderson, O. D., Y. Q. Gu, X. Y. Kong, G. R. Lazo, and J. J. Wu. 2009. The wheat ${\omega}$-gliadin genes: structure and EST analysis. Funct. Integr. Genomics. 9 : 397-410. https://doi.org/10.1007/s10142-009-0122-2
  2. Chen, P., W. Liu, J. Yuan, X. Wang, B. Zhou, S. Wang, and D. Liu. 2005. Development and characterization of wheat-Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theor. Appl. Genet. 111 : 941-948. https://doi.org/10.1007/s00122-005-0026-z
  3. Dhaka, V. and B. S. Khatkar. 2015. Effects of gliadin/glutenin and HMW-GS/LMW-GS ratio on dough rheological properties and bread making potential of wheat varieties. J. Food Quality. 38 : 71-82. https://doi.org/10.1111/jfq.12122
  4. Dong, W., M. Wang, F. Xu, T. Quan, K. Peng, L. Xiao, and G. Xio. 2013. Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol. 161 : 1217-1228. https://doi.org/10.1104/pp.112.211854
  5. Dzaman-Serafin, S., B. Telatynska-Mieszek, and K. Ciechanowski. 2005. Heat shock proteins and their characteristics. Pol. Merkur. Lekarski. 19 : 215-219.
  6. Edet, O. U., Y. S. A. Gorafi, S. W. Cho, M. Kishii, and H. Tsujimoto. 2018. Novel molecular marker-assisted strategy for production of wheat-Leymus mollis chromosome addition lines. Sci. Rep. 8 : 16117. https://doi.org/10.1038/s41598-018-34545-x
  7. Fitzpatrick, T. B., N. Amrhein, and P. Macheroux. 2003. Characterization of YqjM, an old yellow enzyme homolog from Bacillus subtilis involved in the oxidative stress response. The J. Biol. Chem. 278 : 19891-19897. https://doi.org/10.1074/jbc.M211778200
  8. Guo, J. C., R. J. Duan, X. W. Hu, K. M. Li, and S. P. Fu. 2010. Isopentenyl transferase gene (ipt) downstream transcriptionally fused with gene expression improves the growth of transgenic plants. Transgenic Res. 19 : 197-209. https://doi.org/10.1007/s11248-009-9298-4
  9. Jia, X. Y., C. Y. Xu, R. L. Jing, R. Z. Li, X. G. Mao, J. P. Wang, and X. P. Chang. 2008. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in droughtstressed responses. J. Exp. Bot. 59 : 739-751. https://doi.org/10.1093/jxb/erm369
  10. Jin, Y., A. S. Tashpulatov, H. Katholnigg, E. Heberle-Bors, and A. Touraev. 2006. Isolation and characterization of two wheat beta-expansin genes expressed during male gametophyte development. Protoplasma. 228 : 13-19. https://doi.org/10.1007/s00709-006-0176-0
  11. Kadonaga, J. T. and R. Tjian. 1986. Affinity purification of sequence-specific DNA binding proteins. Proc. Natl. Acd. Sci. 83 : 5889-5893. https://doi.org/10.1073/pnas.83.16.5889
  12. Kieffer, P., J. Dommes, L. Hoffmann, J. F. Hausman, and J. Renaut. 2008. Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics. 8 : 2514-2530. https://doi.org/10.1002/pmic.200701110
  13. Kishii, M., T. Yamada, T. Sasakuma, and H. Tsujimoto. 2004. Production of wheat-Leymus racemosus chromosome addition lines. Theor. Appl. Genet. 109 : 255-260. https://doi.org/10.1007/s00122-004-1631-y
  14. Lamb, D. J., W. El-Sankary, and G. A. Ferns. 2003. Molecular mimicry in atherosclerosis: a role for heat shock proteins in immunisation. Atherosclerosis. 167 : 177-85. https://doi.org/10.1016/S0021-9150(02)00301-5
  15. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 : 680-685. https://doi.org/10.1038/227680a0
  16. Latchman, D. S. 1993. Transcription factors: an overview. Int. J. Exp. Path. 74 : 417-422.
  17. Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin Phenol reagent. J. Biol. Chem. 193 : 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  18. Marri, L., F. Sparla, P. Pupillo, and P. Trost. 2005. Co-ordinated gene expression of photosynthetic glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana. J. Exp. Bot. 56 : 73-80. https://doi.org/10.1093/jxb/eri020
  19. McGuire, P. E. and J. Dvorak. 1981. High salt-tolerance potential in wheat grasses. Crop Sci. 21 : 702-705. https://doi.org/10.2135/cropsci1981.0011183X002100050018x
  20. McQueen-Mason, S., D. M. Durachko, and D. J. Cosgrove. 1992. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 4 : 1425-1433. https://doi.org/10.2307/3869513
  21. Mohammed, Y. S. A., I. S. A. Tahir, N. M. Kamal, A. E. Eltayeb, A. M. Ali, and N. M. Kamal, 2014. Impact of wheat-Leymus racemosus added chromosomes on wheat adaptation and tolerance to heat stress. Breed. Sci. 63 : 450-460. https://doi.org/10.1270/jsbbs.63.450
  22. Moore, M. S. and G. Blobel. 1994. AG protein involved in nucleocytoplasmic transport: the role of Ran. Trends in Biochemical Sciences. 19 : 211-216. https://doi.org/10.1016/0968-0004(94)90024-8
  23. Ostergren, G. and W. K. Heneen. 1962. A squash technique for chromosome morphological studies, Hereditas, 48 : 332-341. https://doi.org/10.1111/j.1601-5223.1962.tb01817.x
  24. Price, G. D., J. R. Evans, S. von Caemmerer, J. W. Yu, and M. R. Badger. 1995. Specific reduction of chloroplast glyceraldyhyde-3-phosphate dehydrogenase activity by antisense RNA reduces $CO_2$ assimilation via a reduction in ribulose bisphosphate regeneration in transgenic tabacco plants. Planta. 195 : 369-378. https://doi.org/10.1007/BF00202594
  25. Prinz, W. A., F. Aslund, A. Holmgren, and J. Beckwith. 1997. The role of the thioredoxin and glutaredoxin pathway in reducing protein disulfide bonds in the Escherichia coli Cytoplasm. The J. Biol. Chem. 272 : 15661-15667. https://doi.org/10.1074/jbc.272.25.15661
  26. Rushton, P. J., I. E. Somssich, P. Ringler, and Q. J. Shen. 2010. WRKY transcription factors. Trends Plant Sci. 15 : 247-258. https://doi.org/10.1016/j.tplants.2010.02.006
  27. Sirover, M. A. 1997. Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J. Cell. Biochem. 66 : 133-140. https://doi.org/10.1002/(SICI)1097-4644(19970801)66:2<133::AID-JCB1>3.0.CO;2-R
  28. Subbarao, G. V., B. Tomohiro, K. Masahiro, L. Osamu, H. Samejima, H. Y. Wang, and H. Tsujimoto. 2007. Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming. Plant and Soil. 299 : 55-64. https://doi.org/10.1007/s11104-007-9360-z
  29. Utkina, L. L., Y. A. Andreev, E. A. Rogozhin, T. V. Korostyleva, A. A. Slavokjotova, P. B. Oparin, A. A. Vassilevski, E. V. Grishin, T. A. Egorov, and T. I. Odintsova. 2012. Genes encoding 4-Cys antimicrobial peptides in wheat Triricum kiharae Dorof. et Migush.: multimodular structural organization, instraspecific variability, distribution and role in defence. FEBS J. 280 : 3594-3608. https://doi.org/10.1111/febs.12349
  30. Wang, W., B. Vinocur, O. Shoseyov, and A. Altman. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Sci. 9 : 244-252. https://doi.org/10.1016/j.tplants.2004.03.006
  31. Wu, C. H., L. L. Yeh, H. Huang, L. Arminski, J. Castro-Alvear, Y. Chen, Z. Hu, P. Kourtesis, R. S. Ledley, B. E. Suzek, C. R. Vinayaka, J. Zhang, and W. C. Barker. 2003. The Protein Information Resource. Nucleic Acids Res. 31 : 345-347. https://doi.org/10.1093/nar/gkg040
  32. Xu, Y., J. Tian, T. Gianfagna, and B. Huang. 2009. Effects of SAG12-ipt expression on cytokinin production, growth and senescence of creeping bentgrass (Agrostis stolonifera L.) under heat stress. Plant Growth Regul. 57 : 281-21. https://doi.org/10.1007/s10725-008-9346-8
  33. Zhang, B., Y. Hua, J. Wang, Y. Huo, M. Shimono, B. Day, and Q. Ma. 2017. TaADF4, an actin-depolymerizing factor from wheat, is required for resistance to the stripe rust pathogen Puccinia striiformis f. sp. tritici. The Plant J. 89 : 1210-1224. https://doi.org/10.1111/tpj.13459