Fig. 1. Layers of protection [4]
Fig. 2. Architecture of Cloud-based Predictive Maintenance [17]
Fig. 3. HTM Framework [13]
Fig. 4. Automatic false-alarm labeling framework
Fig. 5. Example of alarm detection logs
Fig. 6. Primary functional steps in HTM algorithm [25]
Fig. 7. Result of anomaly detection using HTM Algorithm (cut version)
Table 1. Example of anomaly-detection result
Table 2. System environment of automatic false-alarm labeling
Table 3. Detailed information on detected anomalies
References
- ISA, ANSI/ISA-18.2: Management of Alarm Systems for the Process Industries. International Society of Automation. Durham, NC, USA, 2009.
- Nochur, A., Vedam, H., & Koene, J., Alarm performance metrics. Singapore Honeywell Singapore. 2001.
- Jain, P., Pasman, H. J., Waldram, S. P., Rogers, W. J., & Mannan, M. S., Did we learn about risk control since Seveso? Yes, we surely did, but is it enough? An historical brief and problem analysis. Journal of Loss Prevention in the Process Industries. 2016.
- Stauffer, T., Sands, N., & Dunn, D., Get a Life (cycle)! Connecting Alarm Management and Safety Instrumented Systems. Paper presented at the ISA Safety & Security Symposium. 2010b.
- Srinivasan, R., Liu, J., Lim, K., Tan, K., & Ho, W., Intelligent alarm management in a petroleum refinery. Hydrocarbon Processing, 83(11), 47-54. 2004.
- EEMUA. 191-Alarm Systems: A Guide to Design, Management and Procurement Edition 3. 2013.
-
Pariyani, A., Seider, W. D., Oktem, U. G., & Soroush, M., Incidents Investigation and Dynamic Analysis of Large Alarm Databases in Chemical Plants: A Fluidized-Catalytic-Cracking Unit Case Study
$\dagger$ . Industrial & Engineering Chemistry Research, 49(17), 8062-8079. 2010. https://doi.org/10.1021/ie9019648 - S. Haque and S. Aziz, "False Alarm Detection in Cyber-physical Systems for Healthcare Applications", AASRI Procedia, vol. 5, pp. 54-61, 2013. https://doi.org/10.1016/j.aasri.2013.10.058
- S. Festag, "False alarm ratio of fire detection and fire alarm systems in Germany - A meta analysis", Fire Safety Journal, vol. 79, pp. 119-126, 2016. https://doi.org/10.1016/j.firesaf.2015.11.010
- R. Pokrywka, "Reducing False Alarm Rate in Anomaly Detection with Layered Filtering", Computational Science - ICCS 2008, pp. 396-404, 2008.
- A. Patcha, J.M. Park, An overview of anomaly detection techniques: Existing solutions and latest technological trends, Comput. Netw. 51 (12) (2007) 3448-3470. https://doi.org/10.1016/j.comnet.2007.02.001
- J. Lin, E. Keogh, A. Fu, H.V. Herle, Approximations to magic: finding unusual medical time series, in: 18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05), IEEE, 2005.
- J. Wu, W. Zeng and F. Yan, "Hierarchical Temporal Memory method for time-series-based anomaly detection", 2018.
- S. Ahmad, A. Lavin, S. Purdy and Z. Agha, "Unsupervised real-time anomaly detection for streaming data", Neurocomputing, vol. 262, pp. 134-147, 2017. https://doi.org/10.1016/j.neucom.2017.04.070
- D. Rothenberg, Alarm Management for Process Control. New York: Momentum Press, 2011.
- J. Wang, F. Yang, T. Chen and S. Shah, "An Overview of Industrial Alarm Systems: Main Causes for Alarm Overloading, Research Status, and Open Problems", IEEE Transactions on Automation Science and Engineering, vol. 13, no. 2, pp. 1045-1061, 2016. Available: 10.1109/tase.2015.2464234.
- T. Adi et al., "Cloud-Based Predictive Maintenance Framework for Sensor Data Analytics", ICIC Express Letters, Part B: Applications, vol. 9, no. 11, p. 1161, 2018.
- V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey, ACM Comput.Surv. (CSUR) 41 (3) (2009) 15.
- V. Hodge, J. Austin, A survey of outlier detection methodologies, Artif. Intell. Rev. 22 (2) (2004) 85-126. https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
- J. Hawkins, S. Ahmad, Why neurons have thousands of synapses, a theory of sequence memory in neocortex, Front. Neural Circ. 10 (2016).
- J. Hawkins, "Hierarchical Temporal Memory White Paper", Numenta, 2011.
- Jenkins, S., Guidelines for Engineering Design for Process Safety. Chemical Engineering,119(9), 9-10, 2012.
- Stauffer, T., & Clarke, P. Using alarms as a layer of protection. Process Safety Progress. 2015.
- Nochur, A., Vedam, H., & Koene, J., Alarm performance metrics. Singapore Honeywell Singapore. 2001.
- P. Goel, A. Datta and M. Mannan, "Industrial alarm systems: Challenges and opportunities", Journal of Loss Prevention in the Process Industries, vol. 50, pp. 23-36, 2017. https://doi.org/10.1016/j.jlp.2017.09.001
- S. Ahmad and S. Purdy, "Real-Time Anomaly Detection for Streaming Analytics", arXiv:1607.02480, 2016.
- Cui, Yuwei, Surpur, Chetan, Ahmad, Subutai, and Hawkins, Jeff. Continuous online sequence learning with an unsupervised neural network model. pp. arXiv:1512.05463 [cs.NE], 2015.
- Numenta GitHub repository. [Online]. Available: https://github.com/numenta/numenta-apps/tree/master/unicorn.