DOI QR코드

DOI QR Code

A Study on Unmanned Image Tracking System based on Smart Phone

스마트폰 기반의 무인 영상 추적 시스템 연구

  • Received : 2019.02.14
  • Accepted : 2019.03.20
  • Published : 2019.03.28

Abstract

An unattended recording system based on smartphone based image image tracking is rapidly developing. Among the existing products, a system that automatically tracks and rotates the object to be photographed using an infrared signal is very expensive for general users. Therefore, this paper proposes a mobile unattended recording system that enables automatic recording by anyone who uses a smartphone. The system consists of a commercial mobile camera, a servomotor that moves the camera from side to side, a microcontroller to control the motor, and a commercial wireless Bluetooth Earset for video audio input. In this paper, we designed a system that enables unattended recording through image tracking using smartphone.

최근 스마트폰 기반의 영상 이미지 추적을 통한 무인 녹화 시스템은 급속히 발전하고 있다. 기존의 제품 중 적외선 신호를 이용하여 촬영 대상을 자동으로 추적 및 회전하여 녹화하는 시스템은 일반 사용자가 사용하기에는 매우 고가이다. 따라서 본 논문에서는 스마트폰을 사용하는 사용자라면 누구나 자동 녹화가 가능한 모바일용 무인 녹화 시스템을 제안한다. 본 시스템은 상용 Mobile 카메라, 좌우로 카메라를 움직이는 서보모터(Servo Motor), 모터를 제어하는 마이크로 컨트롤러 그리고 동영상 오디오 입력을 담당할 상용 무선 블루투스 이어셋(Wireless Bluetooth Earset)으로 구성된다. 본 논문에서는 스마트 폰을 이용하여 영상 추적을 통해 무인 녹화가 가능한 시스템을 설계하였다.

Keywords

JKOHBZ_2019_v9n3_30_f0001.png 이미지

Fig. 1. Unattended Moving System ‘Swivl’

JKOHBZ_2019_v9n3_30_f0002.png 이미지

Fig. 2. Structure of System

JKOHBZ_2019_v9n3_30_f0003.png 이미지

Fig. 3. Process for Image Video Extraction

JKOHBZ_2019_v9n3_30_f0004.png 이미지

Fig. 4. 7 Step of Target Extraction Method

JKOHBZ_2019_v9n3_30_f0005.png 이미지

Fig. 5 Face-Detection

JKOHBZ_2019_v9n3_30_f0006.png 이미지

Fig. 6 Face Detection Algorithm

JKOHBZ_2019_v9n3_30_f0007.png 이미지

Fig. 7 CAM-Shift Method

JKOHBZ_2019_v9n3_30_f0008.png 이미지

Fig. 8 Determine the presence and direction ofrotation(1)

JKOHBZ_2019_v9n3_30_f0009.png 이미지

Fig. 9 Determine the presence and direction of rotation(2)

References

  1. Y. J. He, M. Li, J. L. Zhang & J. P. Yao. (2015). Infrared target tracking via weighted correlation filter. Infrared Physics & Technology, 73, 103-114. https://doi.org/10.1016/j.infrared.2015.09.010
  2. M. Davide, S. Raimondo, D. Gasparella Sturzenegger, J. Lygeros & M. Morari. (2010). A tracking algorithm for PTZ cameras, IFAC Proceedings Volumes, 43(19), 61-66.
  3. P. Zhang, T. Zhuo, L. Xie & Y. Zhang. (2016). Deformable object tracking with spatiotemporal segmentation in big vision surveillance. Neurocomputing, 204, 87-96. https://doi.org/10.1016/j.neucom.2015.07.149
  4. S. Yasukawa, H. Okuno, K. Ishii & T. Yagi. (2016). Real-time object tracking based on scale-invariant features employing bio-inspired hardware. Neural Networks, 81, 29-38. https://doi.org/10.1016/j.neunet.2016.05.002
  5. G. Edelman & J. Bijhold. (2010). Tracking people and cars using 3D modeling and CCTV. Forensic Science International, 202(1-3), 26-35. https://doi.org/10.1016/j.forsciint.2010.04.021
  6. J. Liu, D. Liu, J. Dauwels & H. S. Seah. (2015). 3D Human motion tracking by exemplar-based conditional particle filter. Signal Processing, 110, 164-177. https://doi.org/10.1016/j.sigpro.2014.08.028
  7. J. Wang, Y. Lu, L. Gu, C. Zhou & X. Chai. (2014). Moving object recognition under simulated prosthetic vision using background-subtraction-based image processing strategies. Information Sciences, 277, 512-524. https://doi.org/10.1016/j.ins.2014.02.136
  8. J. Yin, C. Fu & J. Hu. (2012). Using incremental subspace and contour template for object tracking. Journal of Network and Computer Applications, 35(6), 1740-1748. https://doi.org/10.1016/j.jnca.2012.06.005
  9. F. Liu, C. Shen, I. Reid & A. van den Hengel. (2016). Online unsupervised feature learning for visual tracking. Image and Vision Computing, 51, 84-94. https://doi.org/10.1016/j.imavis.2016.04.008
  10. X. Shen, X. Sui, K. Pan & Y. Tao. (2016). Adaptive pedestrian tracking via patch-based features and spatial-temporal similarity measurement. Pattern Recognition, 53, 163-173. https://doi.org/10.1016/j.patcog.2015.11.017
  11. S. Chen & C. Liu. (2015). Eye detection using discriminatory Haar features and a new efficient SVM. Image and Vision Computing, 33, 68-77. https://doi.org/10.1016/j.imavis.2014.10.007
  12. H. Zheng, X. Mao, L. Chen & X. Liang. (2015). Adaptive edge-based mean shift for drastic change gray target tracking. Optik - International Journal for Light and Electron Optics, 126(23), 3859-3867. https://doi.org/10.1016/j.ijleo.2015.07.160
  13. M. Gentili, R. Sannino & M. Petracca. (2016). BlueVoice: Voice communications over Bluetooth Low Energy in the Internet of Things scenario. Computer Communications, 89, 51-59. https://doi.org/10.1016/j.comcom.2016.03.004