Fig. 1. Unattended Moving System ‘Swivl’
Fig. 2. Structure of System
Fig. 3. Process for Image Video Extraction
Fig. 4. 7 Step of Target Extraction Method
Fig. 5 Face-Detection
Fig. 6 Face Detection Algorithm
Fig. 7 CAM-Shift Method
Fig. 8 Determine the presence and direction ofrotation(1)
Fig. 9 Determine the presence and direction of rotation(2)
References
- Y. J. He, M. Li, J. L. Zhang & J. P. Yao. (2015). Infrared target tracking via weighted correlation filter. Infrared Physics & Technology, 73, 103-114. https://doi.org/10.1016/j.infrared.2015.09.010
- M. Davide, S. Raimondo, D. Gasparella Sturzenegger, J. Lygeros & M. Morari. (2010). A tracking algorithm for PTZ cameras, IFAC Proceedings Volumes, 43(19), 61-66.
- P. Zhang, T. Zhuo, L. Xie & Y. Zhang. (2016). Deformable object tracking with spatiotemporal segmentation in big vision surveillance. Neurocomputing, 204, 87-96. https://doi.org/10.1016/j.neucom.2015.07.149
- S. Yasukawa, H. Okuno, K. Ishii & T. Yagi. (2016). Real-time object tracking based on scale-invariant features employing bio-inspired hardware. Neural Networks, 81, 29-38. https://doi.org/10.1016/j.neunet.2016.05.002
- G. Edelman & J. Bijhold. (2010). Tracking people and cars using 3D modeling and CCTV. Forensic Science International, 202(1-3), 26-35. https://doi.org/10.1016/j.forsciint.2010.04.021
- J. Liu, D. Liu, J. Dauwels & H. S. Seah. (2015). 3D Human motion tracking by exemplar-based conditional particle filter. Signal Processing, 110, 164-177. https://doi.org/10.1016/j.sigpro.2014.08.028
- J. Wang, Y. Lu, L. Gu, C. Zhou & X. Chai. (2014). Moving object recognition under simulated prosthetic vision using background-subtraction-based image processing strategies. Information Sciences, 277, 512-524. https://doi.org/10.1016/j.ins.2014.02.136
- J. Yin, C. Fu & J. Hu. (2012). Using incremental subspace and contour template for object tracking. Journal of Network and Computer Applications, 35(6), 1740-1748. https://doi.org/10.1016/j.jnca.2012.06.005
- F. Liu, C. Shen, I. Reid & A. van den Hengel. (2016). Online unsupervised feature learning for visual tracking. Image and Vision Computing, 51, 84-94. https://doi.org/10.1016/j.imavis.2016.04.008
- X. Shen, X. Sui, K. Pan & Y. Tao. (2016). Adaptive pedestrian tracking via patch-based features and spatial-temporal similarity measurement. Pattern Recognition, 53, 163-173. https://doi.org/10.1016/j.patcog.2015.11.017
- S. Chen & C. Liu. (2015). Eye detection using discriminatory Haar features and a new efficient SVM. Image and Vision Computing, 33, 68-77. https://doi.org/10.1016/j.imavis.2014.10.007
- H. Zheng, X. Mao, L. Chen & X. Liang. (2015). Adaptive edge-based mean shift for drastic change gray target tracking. Optik - International Journal for Light and Electron Optics, 126(23), 3859-3867. https://doi.org/10.1016/j.ijleo.2015.07.160
- M. Gentili, R. Sannino & M. Petracca. (2016). BlueVoice: Voice communications over Bluetooth Low Energy in the Internet of Things scenario. Computer Communications, 89, 51-59. https://doi.org/10.1016/j.comcom.2016.03.004