• 제목/요약/키워드: 영상 추출

검색결과 6,597건 처리시간 0.032초

계층적인 접근과 개선된 RBF 네트워크를 이용한 영문 명함 인식 (Recognition of English Calling Card by Using Hierarchical Approach and Enhanced RBF Networks)

  • 임은경;김광백
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.141-146
    • /
    • 2003
  • 본 논문에서는 문자열 영역 추출을 위한 3배 축소 명함 영상, 개별 문자 추출을 위한 2배 축소 명함 영상, 정확한 인식을 위한 원본 영상으로 명함 영상을 분리하고, 분리된 영상들을 대상으로 각 영상 크기에 적합한 처리를 수행하고 각각의 결과들을 이용하여 정확한 문자를 추출할 수 있는 방법을 제안한다 그리고 추출된 개별 문자들의 인식을 위해서 ART1을 적용한 개선된 RBF 네트워크를 제안하여 적용한다 제안된 명함 추출 방법은 원 영상을 각각의 처리 방법에 적합하도록 하기 위해서 다해상도로 분리한다. 문자열의 추출은 문자들의 간격을 축소 시켜서 블록을 추출하기 쉬운 적절한 최소 크기의 영상에서 수행하고, 개별 문자의 추출은 문자들의 간격을 분리할 수 있는 적절한 영상의 크기에서 수행한다 개별 문자 인식은 문자의 형태학적 특성을 잘 나타내기 위해서 원본 영상에 적용한다 본 논문에서 제안한 추출 방법은 문자를 정확히 추출할 수 있으며 병렬 처리가 가능하여 처리시간을 단축할 수 있는 장점을 가진다. 그리고 정확히 추출된 개별 문자들을 개선된 R8F 네트워크를 이용하여 인식률을 향상시킨다. 제안된 명함 추출 및 인식 방법의 성능을 확인하기 위해서 실제 영문 명함 영상을 대상으로 실험한 결과, 기존의 방법보다 명함 추출 및 인식에서 우수한 성능이 있음을 확인하였다.

  • PDF

객체 추출 및 객체별 그룹핑을 이용한 영상검색 결과의 단계적 서비스 방안 (A Scheme for Progressive Service of Retrieved Images based on Object Extraction and Grouping)

  • 박창민;김성영;김민환
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(상)
    • /
    • pp.180-185
    • /
    • 2002
  • 본 논문에서는 키워드를 입력해 검색된 영상들을 유사한 특징을 갖는 소수의 그룹으로 그룹핑하고 각 그룹을 대표하는 대표영상을 추출하여 우선적으로 사용자에게 보여주고 필요에 따라 나머지 영상들을 단계적으로 서비스할 수 있는 방안을 제시한다. 영상 그룹핑을 위한 각 영상의 특징은 영상에 포함된 중심 객체를 사용하여 추출한다. 이를 위해 검색 키워드는 객체와 연관성이 있는 단어로 제한하여 영상을 검색하며 검색된 영상으로부터 중심 객체를 추출할 수 있는 객체 추출 방법을 활용하였다. 각 영상으로부터 추출된 중심 객체에 대한 특징 벡터는 칼라 분포를 이용한다. 영상 그룹핑은 칼라분포로 표현되는 특징공간에서의 밀집도를 조사하여 높은 밀도로 모여있는 영역별로 추출하여 동일한 그룹으로 분류하였다. 대표 영상은 분류된 그룹에서 가장 밀집도가 높은 영상으로 선택된다. 한편, 얼굴이 포함된 영상은 사전에 따로 분류하고 얼굴 크기 및 얼굴 수에 따라 영상을 그룹핑하여 각 그룹에 대한 대표 영상을 선정한다. 본 연구에서 제안한 방법은 사용자에게 모든 검색 결과를 일괄적으로 보여주는 것에 비해 보다 빠른 시간 내에 사용자가 원하는 영상을 편리하면서도 효과적으로 확인할 수 있는 방법을 제공해 줄 수 있을 것으로 기대한다.

  • PDF

초음파 영상에서의 충수염 추출 및 분석 (Extraction and Analysis of Appendicitis from Ultrasound Images)

  • 채병주;박효민;박승익;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.84-85
    • /
    • 2012
  • 본 논문에서는 충수염 영상 분석에 필요한 두께, 염증의 변화량 등의 자료를 객관적으로 측정할 수 있도록 하기 위해 초음파 영상에서 충수염을 추출하는 방법을 제안한다. 초음파 영상은 동일한 환경에서 영상을 촬영할 수 없기 때문에 객관적인 분석을 위해 초음파 영상을 표준화 한다. 본 논문에서 사용된 영상은 표준화된 초음파 영상을 대상으로 하였으며, 충수염 추출 과정은 표준화된 초음파 영상에서 최하단 근막을 추출한 뒤, 추출된 최하단 근막을 기준으로 충수를 추출한다. 제안된 방법을 초음파 영상을 대상으로 실험한 결과, 제안된 충수염 추출 방법이 측정자가 직접 충수염을 추출하여 분석하는 방법보다 효과적인 것을 확인할 수 있었다.

  • PDF

복부 초음파 영상에서 근육 추출 및 지방 분석 (Muscle Extraction and Fat Analysis in Abdominal Ultrasnography Images)

  • 채병주;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.368-370
    • /
    • 2013
  • 본 논문에서는 복부 초음파 영상에서 복부 근육을 추출하고 추출된 근육 영역에서 지방을 분석하는 방법을 제안한다. 복부 초음파 영상에서 밝은 명암도를 가지는 근막 영역과 어두운 명암도를 가지는 근육 영역의 명암 대비를 강조하기 위해서 앤드 인 탐색 스트레칭 방법과 Multiple 연산을 적용한다. 평균 명암도와 명암 대비가 강조된 복부 초음파 영상에서 수직 방향의 명암도가 200이상인 픽셀들은 퍼지 이진화 기법을 적용하여 이진화한다. 이진화된 영상에서 외복사근 상단선을 추출한 후, 퍼지 이진화 기법이 적용된 영상과 합성한다. 합성된 영상에서 최종 근막 영역을 추출한다. 추출된 각각의 복부 근육 영역에 ART2 알고리즘을 적용하여 복부 근육 영역을 양자화한다. 양자화된 복부 근육 내의 영역을 분석하여 최종 지방 영역을 추출한다. 제안된 복부 근육 추출 및 지방 분석 방법을 실제 복부 초음파 영상을 대상으로 실험한 결과, 추출된 복부 근육 영역에 ART2 알고리즘 기반 양자화 기법을 적용하여 지방을 추출하는 것이 복부비만을 분석하는데 도움이 되는 것을 영상 의학과 전문의를 통해 확인하였다.

  • PDF

뇌 MR 영상처리기의 설계 및 구현 (Design and Implementation of Brain MR Image Processing Tool)

  • 조경은;송미영;조형제
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 추계학술발표논문집
    • /
    • pp.159-164
    • /
    • 2001
  • 본 연구에서 설계하고 구현한 뇌 MR영상 처리기에서는 뇌 MR 영상에서 진단에 필요한 정보들을 자동 추출한다. 의료영상 처리 시에는 수집된 의료영상의 특징을 분석하고 특징들을 분류해야 하며 이를 위해서는 효율적인 특징 추출 알고리즘들 필요하다. 뇌 MR 영상 처리기는 영상의 잡음제거나 영상 강화를 위한 전처리기, 영상의 특징을 추출하기 위한 영역분할기와 전역, 지역 특징 추출기로 구성된다. 뇌 MR 영상 특징 추출을 위한 효율적인 의료영상 처리기의 개발 내용을 기술한다.

  • PDF

자동 임계치에 의한 다양한 영상의 에지 추출 (Edge Detection of Variable Image by Adaptive Threshold)

  • 백순화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.739-742
    • /
    • 2002
  • 본 논문에서는 에지 추출을 위하여 다양한 영상에 탄력적으로 적용되는 자동 임계치에 의한 에지 추출 방법을 제안한다. 자동 임계치는 Prewitt 연산자를 이용하여 얻어진 영상을 사용하여 구한다. 에지 추출(Edge Detection)은 영상처리에 있어 데이터의 양을 크게 줄일 수 있는 장점과 함께 각종 영상처리의 전처리로 이용되어지고 있는데 정확한 에지 추출은 영상을 이해하고 분석하는데 있어서 대단히 중요한 요소로 영상처리의 다양한 분야와 결합하여 이용되어 지고 있다. 본 논문에서 제안한 자동 임계치 알고리즘에 의한 에지 추출은 영상의 세세한 부분의 에지를 탐색하는데 효과적임을 알 수가 있었다.

  • PDF

객체 특징을 이용한 내용 기반 검색 시스템 (Content-based Retrieval System using Object Features)

  • 정성호;황병곤;이상열
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 춘계학술발표논문집
    • /
    • pp.83-87
    • /
    • 2001
  • 본 연구에서는 입력된 영상을 구성하는 객체의 형태 특징을 이용한 영상 검색 시스템을 제안한다. 현재 MPEG-7의 XM에서 제안된 영상 검색 기술은 정확한 검색이나 유사도를 측정한 수 있는 기능을 가지는 객체정보를 정확하게 추출했다는 가정하에서 기술되고 있다. 그러나 실제 영상에서 물체의 외곽선을 정확히 추출하는 것은 매우 어려우며 물체 내부에 중요한 특징이 있을 때 이를 표현하기도 어렵다. 따라서 현재의 영상 검색 시스템에서는 물체의 추출 없이 물체 외곽선 및 내부 특징에 대한 대략적인 정보를 이용하여 검색을 할 수 있는 형태 위주의 정보가 필요하다. 이를 위해 8방향 chain code를 이용하여 입력 영상으로부터 물체의 중요한 특징 중 하나인 물체의 내부 외부의 경계선을 추출하여 영상의 특징으로 이용한다. 이렇게 함으로써 기존의 물체 추출의 과정없이 형태에 대한 영상 검색을 수행한 수 있다. 형태특징을 얻기 위해서 먼저 체인코드를 이용하여 경계선 추출을 추출하였다. 형태특징으로 객체의 경계선과 무게중심까지의 합, 표준편차 그리고 객체의 장축과 단축 비율 등을 추출하였다. 이러한 형태특징 정보를 이용하여 데이터 베이스에 저장된 영상과 질의 영상을 비교하여 유사도 순위에 따라 후보 영상들을 검색하였다. 환 실험의 결과 크기, 회전 이동 등의 변화에 둔감하였다.

  • PDF

퍼지 이진화와 퍼지 추론 기법을 이용한 손금 추출 및 분석 (The Lines Extraction and Analysis of The Palm using Fuzzy Binarization and Fuzzy Reasoning Rule)

  • 장수재;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.179-182
    • /
    • 2010
  • 본 논문에서는 영상으로부터 손금을 추출하기 위해서 획득된 영상을 YCbCr 컬러 공간으로 변환한다. YCbCr 컬러 공간에서 Y:65~255, Cb:25~255, Cr:130~255에 해당되는 피부색 정보를 추출하고 이 피부색 정보를 임계치로 설정하여 손 영역을 추출한다. 추출된 손 영역에서 내부 픽셀의 3:1 이상, 전체 영상의 2:1 이상인 손의 형태학적 정보와 8 방향 윤곽선 추적 기법을 이용하여 잡음을 제거한다. 잡음이 제거된 영상에서 손금을 추출하기 위해서 스트레칭 기법과 소벨 마스크를 이용하여 에지를 추출한다. 추출된 에지 영상에서도 미세한 잡음이 존재하므로 퍼지 이진화 기법을 이용하여 효과적으로 이진화 한다. 이진화된 영상에서 손금의 형태학적 정보를 이용하여 손의 윤곽선을 제외한 손금 영역을 추출한다. 추출된 손금 영역은 동치 테이블을 이용하는 연결 영역 검색 기법과 퍼지 추론 기법을 적용하여 개별 손금의 중요선을 추출하고 분석한다. 다양한 손금 영상을 대상으로 실험한 결과, 제안된 방법이 기존의 손금 추출 방법보다 손금을 분석하는데 효율적인 것을 확인하였다.

  • PDF

의료영상에서 특징점 추출을 이용한 영역추출 (Region Detection Using the Feature Point Extraction from Medical Image)

  • 김엄준;성미영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.429-431
    • /
    • 1998
  • 본 논문에서는 의료 영상 중에서 성대 운동의 불규칙적인 움직임을 판단하여 자동으로 진단 파라미터를 구하는 비디오스트로보키모그래피(Videostrobokymography) 시스템에서 관심 영역을 추출하는 방법을 소개하고자 한다. CCD카메라에 의해 촬영된 영상은 비디오 테이프에 저장된 후 이미지 캡쳐 보드에서 그레이 이미지(gray-level)로 변환되어 저장된다. 입력된 영상은 움직이는 영상을 촬영한 것이므로 관심 영역의 위치가 각 프레임마다 다르다. 또한 실제로 입력된 성대영상들이 점진적인 농도 변화를 보이기 때문에 에지에 의해 영역을 추출하는 일반적인 영역 추출방법은 사용하기 어렵다. 본 논문에서는 두 번의 단계를 통하여 관심 영역을 추출하고 있다. 첫 번째는 입력된 영상에서 노이즈를 제거한 후 각 프레임에서 영상의 최소 에너지를 구한다. 두 번째로 농도 변화 값을 특징 값으로 이용하는 분할-합병 알고리즘(Split-merge Algorithm)을 적용하여 관심 영역을 추출하였다. 제안한 알고리즘을 19명의 성대 영상에 적용하여 분석한 결과 성대의 관심 영역을 추출할 수 있었다. 그리고, 영상의 에너지 값을 이용하는 스네이크 알고리즘(Snake Algorithm)에 적용하여 비교해본 결과 본 연구에서 제안하는 스네이크 알고리즘보다 좋은 성능을 보임을 확인할 수 있었다. 본 연구에서 제안하는 관심 영역 추출 방법은 동적인 변화를 보이는 영상에서 관심 영역을 추출할 수 있을 뿐 아니라 계산 량이 적어 200x280크기의 이미지를 초당 약 40프레임에 대한 관심 영역을 추출할 수 있는 장점이 있다.

  • PDF

실시간 객체추출 영상감시 시스템 (Video Monitoring System on Real Time using Object Extraction)

  • 오택환
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 춘계학술발표논문집 1부
    • /
    • pp.311-314
    • /
    • 2010
  • 실시간 영상에서 객체 추적은 수년간 컴퓨터 비전 및 여러 실용적 응용 분야에서 관심을 가지는 주제 중 하나이다. 하지만 배경영상의 잡음을 객체로 인식하는 오류로 인하여 추출하고자 하는 객체를 찾지 못하는 경우가 있다. 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다.

  • PDF