Fig. 1. Data acquisition and data preprocessing
Fig. 2. Number of topics indicated by four metrics. The metrics were standardized to range between 0 and 1.
Fig. 3. Number of papers in each topic
Fig. 4. The 95% confidence intervals for topic probability at each time period
Table 1. Topics and the top 10 words in each discovered by LDA analysis of abstracts
Table 2. Results of multinomial logistic regression. The reference group is Topic 1(Surgery).
Table 3. Main terminologies in titles and keywords for each topic
References
- H. G. Welch & C. B. William. (2010). Overdiagnosis in cancer. Journal of the National Cancer Institute, 102(9), 605-613. DOI : https://doi.org/10.1093/jnci/djq099
- H. S. Ahn & H. G. Welch. (2015). South Korea's thyroid-cancer "epidemic"-turning the tide. New England Journal of Medicine, 373(24), 2389-2390. DOI : 10.1056/NEJMc1507622
- S. A. Choi, J. H. Lee, D. K. Min, & C. Lee. (2015). Association between thyroid cancer incidence and health indicators in OECD 34 countries. Korean Journal of Family Practice, 5(3, suppl. 2), 714-720. http://www.kjfp.or.kr/journal/view.html?uid=354&vmd=Full
- J. H. Chung. (2018). Prevalence of thyroid nodules detected by ultrasonography in adults for health check-up and analysis of fine needle aspiration cytology. Journal of Korean Endocrine Society, 23(6), 391-394. DOI : https://doi.org/10.3803/jkes.2008.23.6.391
- S. Ezzat, D. A. Sarti, D. R. Cain, & G. D. Braunstein. (1994). Thyroid incidentalomas: prevalence by palpation and ultrasonography. Archives of internal medicine, 154(16), 1838-1840. DOI : 10.1001/archinte.1994.00420160075010
- J. P. Brito, H. J. Kim, S. J. Han, Y. S. Lee, & H. S. Ahn. (2016). Geographic distribution and evolution of thyroid cancer epidemic in South Korea. Thyroid, 26(6), 864-865. DOI : https://doi.org/10.1089/thy.2016.0057
- J. H. Chung. (2014). A Refutation against Unfounded Reports on Thyroid Cancer, International Journal of Thyroidology, 7(1), 1-6. DOI : http://dx.doi.org/10.11106/jkta.2014.7.1.1
- H. S. Ahn. (2017). Overdiagnosis in health care: impact of cancer screening. Journal of the Korean Medical Association, 60(4), 323-329. DOI : https://doi.org/10.5124/jkma.2017.60.4.323
- K. H. Yi, Y. J. Park, S. S. Koong, J. H. Kim, D. G. Na, J. S. Ryu, S. Y. Park, C. H. Baek, Y. K. Shong, & Y. D. Lee. (2011). Revised Korean thyroid association management guidelines for patients with thyroid nodules and thyroid cancer. Journal of the Korean Society of Radiology, 64(4), 389-416. DOI : https://doi.org/10.3348/jksr.2011.64.4.389
- D. M. Blei, A. Y. Ng, & M. I. Jordan. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022. DOI : 10.1162/jmlr.2003.3.4-5.993
- C. H. Papadimitriou, P. Raghavan, H. Tamaki, & S. Vempala. (2000). Latent semantic indexing: A probabilistic analysis. Journal of Computer and System Sciences, 61(2), 217-235. DOI : https://doi.org/10.1006/jcss.2000.1711
- S. Hwang & D. R. Hwang. (2018). A Study on the Research Trends in Arts Management in Korea using Topic Modeling and Semantic Network Analysis. Korean association of arts management, 47, 5-29. http://www.dbpia.co.kr/Journal/PDFViewNew?id=NODE07523972&prevPathCode= https://doi.org/10.52564/JAMP.2018.47.5
- J. E. Yoon & C. J. Suh. (2018). Research Trend Analysis on Smart healthcare by using Topic Modeling and Ego Network Analysis. Journal of Digital Contents Society, 19(5), 981-993. DOI : http://dx.doi.org/10.9728/dcs.2018.19.5.981
- N. Jang & M. J. Kim. (2017). Research Trend Analysis in Fashion Design Studies in Korea using Topic Modeling. Journal of Digital Convergence, 15(6), 415-423. DOI : http://doi.org/10.14400/JDC.2017.15.6.415
- K. H. Choi & J. H. Park. (2015). The Analysis of Public Awareness about Literary Therapy by Utilizing Big Data Analysis-The aspects of convergence literature and statistics. Journal of Digital Convergence, 13(4), 395-404. DOI : http://dx.doi.org/10.14400/JDC.2015.13.4.395
- N. H. Jo & E. Y. Na. (2017). Analysis of Domestic Research on Depression and Stress : Focused on the Treatment and Subjects. Journal of Convergence for Information Technology, 7(6), 53-59. DOI : doi.org/10.22156/CS4SMB.2017.7.6.053
- S. H. Choi. (2016). A Study on Smart Campus Information Services. Journal of Convergence for Information Technology, 6(3), 79-83. DOI : dx.doi.org/10.22156/CS4SMB.2016.6.3.079
- T. G. Lee, S. M. Heo, S. H. Shin & J. Y. Yang. (2018). Trend Analysis of Thyroid Cancer Research in Korea with Text Mining Techniques. Journal of The Korea Society of Computer and Information, 23(12), 153-161. DOI : https://doi.org/10.9708/jksci.2018.23.12.153
- T. L. Griffiths & M. Steyvers. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl 1), 5228-5235. DOI : https://doi.org/10.1073/pnas.0307752101
- J. Cao, T. Xia, J. Li, Y. Zhang, & S. Tang. (2009). A density-based method for adaptive lda model selection. Neurocomputing, 72(7), 1775-1781. DOI : https://doi.org/10.1016/j.neucom.2008.06.011
- R. Arun, V. Suresh, C. V. Madhavan, & M. N. Murthy. (2010). On finding the natural number of topics with latent dirichlet allocation: Some observations. Pacific-Asia Conference on Knowledge Discovery and Data Mining, Part I, LNAI(6118), 391-402. DOI : doi.org/10.1007/978-3-642-13657-3_43
- R. Deveaud, E. SanJuan, & P. Bellot. (2014). Accurate and effective latent concept modeling for ad hoc information retrieval. Document numerique, 17(1), 61-84. DOI : https://doi.org/10.3166/DN.17.1.61-84