DOI QR코드

DOI QR Code

Extracellular Tannase from Aspergillus ochraceus: Influence of the Culture Conditions on Biofilm Formation, Enzyme Production, and Application

  • Received : 2019.03.29
  • Accepted : 2019.08.27
  • Published : 2019.11.28

Abstract

Aspergillus ochraceus biofilm, developed on an inert support, can produce tannase in Khanna medium containing 1.5% (w/v) tannic acid as the carbon source, at an initial pH of 5.0, for 72 h at 28℃. Addition of 0.1% (w/v) yeast extract increased enzyme production. The enzyme in the crude filtrate exhibited the highest activity at 30℃ and pH 6.0. At 50℃, the half-life (T50) was 60 min and it was 260 min at pH 6.0. In general, addition of detergents and surfactants did not affect tannase activity significantly. Tannase has potential applications in various biotechnological processes such as the production of propyl gallate and in the treatment of tannin-rich effluents. The content of tannins and total phenolic compounds in effluents from leather treatment was reduced by 56-83% and 47-64%, respectively, after 2 h of enzyme treatment. The content of tannins and total phenolic compounds in the sorghum flour treated for 120 h with tannase were reduced by 61% and 17%, respectively. Interestingly, the same A. ochraceus biofilm was able to produce tannase for three sequential fermentative process. In conclusion, fungal biofilm is an interesting alternative to produce high levels of tannase with biotechnological potential to be applied in different industrial sectors.

Keywords

References

  1. Frutos P, Hervas G, Giraldez FJ, Mantecon AR. 2004. Review. Tannins and ruminant nutrition. Spanish J. Agric. Res. 2: 191-202. https://doi.org/10.5424/sjar/2004022-73
  2. Banerjee D, Pati BR. 2007. Optimization of tannase production by Aureobasidium pullulans DBS66. J. Microbiol. Biotechnol. 17: 1049-1053.
  3. Chavez-Gonzalez M, Rodriguez-Duran LV, Balagurusamy N, Barragan-Prado A, Rodríguez R, Contreras CC, Aguilar CN. 2011. Biotechnological advances and challenges of tanase: An overview. Food Bioprocess Technol. 5: 445-459. https://doi.org/10.1007/s11947-011-0608-5
  4. Gomez-Plaza E, Cano-Lopez M. 2011. A review on microoxygenation of red wines: claims, benefits and the underlying chemistry. Food Chem. 125: 1131-1140. https://doi.org/10.1016/j.foodchem.2010.10.034
  5. Yao J, Guo GS, Ren GH, Liu YH. 2014. Production, characterization and applications of tannase. J. Mol. Cat. B: Enzymatic 101: 137-147. https://doi.org/10.1016/j.molcatb.2013.11.018
  6. Battestin V, Matsuda KL, Macedo AG. 2004. Fontes e aplicacoes de taninos e tanases em alimentos. Alimentos e Nutricao 15: 63-72.
  7. Patra A, Saxena J. 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochem 71: 1198-1222. https://doi.org/10.1016/j.phytochem.2010.05.010
  8. Rodríguez-Durán LV, Valdivia-Urdiales B, Contreras- Esquivel JC, Rodríguez-Herrera R, Aguilar CN. 2011. Novel strategies for upstream and downstream processing of tannin acyl hydrolase. Enzyme Res. 2011: 823619.
  9. Raaman N, Mahendran B, Jaganathan C, Sukumar S, Chandrasekaran V. 2010. Optimasation of extracellular tannase production from Paecilomyces variotii. W. J. Microbiol. Biotechnol. 26: 1033-1039. https://doi.org/10.1007/s11274-009-0266-1
  10. Beniwal V, Kumar A, Sharma J, Chhokar V. 2013. Recent advances in industrial application of tannases: a review. Recent Patents Biotechnol. 7: 228-233. https://doi.org/10.2174/18722083113076660013
  11. Kumar SS, Sreekumar R, Sabu A. 2018. Tannase and its applications in food processing. pp.357-381. In: B. Parameswaran, S. Varjani and S. Raveendran, eds. Green Bio-processes. Energy, Environment, and Sustainability. Singapore: Springer.
  12. Cavalcanti RMF, Jorge JA, Guimaraes LHS. 2018. Characterization of A. fumigatus CAS21 tannase with potential for propyl gallate synthesis and treatment of tannery effluent from leather industry. 3 Biotech 8: 270. https://doi.org/10.1007/s13205-018-1294-z
  13. Gutiérrez-Correa M, Ludeña Y, Ramage G, Villena GK. 2012. Recent advances on filamentous fungal biofilms for industrial uses. Appl. Biochem. Biotechnol. 167: 1235-1253. https://doi.org/10.1007/s12010-012-9555-5
  14. Sato VS, Jorge JA, Guimaraes LHS. 2016. Characterization of a thermotolerant phytase produced by Rhizopus microsporus var. microsporus biofilm on an inert support using sugarcane bagasse as carbon source. Appl. Biochem. Biotechnol. 174: 610-624.
  15. Mussato SI, Rodrigues LR, Teixeira JA. 2009. $\beta$-Fructofuranosidase production by repeated batch fermentation with immobilized A. japonicus. J. Ind. Microbiol. Biotechnol. 36: 923-928. https://doi.org/10.1007/s10295-009-0570-7
  16. Khanna P, Sundaril SS, Kumar NJ. 1995. Production, isolation and partial purification of xylanases from A. sp. W. J. Microbiol. Biotechnol. 11: 242-243. https://doi.org/10.1007/BF00704661
  17. Costa AM, Ribeiro WX, Kato E, Monteiro ARG, Peralta RM. 2008. Production of tannase by A. tamarii in submerged cultures. Braz. Arch. Biol. Technol. 51: 399-404. https://doi.org/10.1590/S1516-89132008000200021
  18. Rizzatti ACS, Jorge JA, Terenzi HF, Rechia CGV, Polizeli MLTM. 2001. Purification and properties of thermostable extracellular $\alpha$-D-xylosidase produced by thermotolerant A. phoenicis. J. Ind. Microbiol. Biotechnol. 26: 156-160, 2001. https://doi.org/10.1038/sj/jim/7000107
  19. Wiseman, A. 1975. Handbook of enzyme biotechnology. pp.148. New York: John Wiley & Sons.
  20. Peralta RM, Terenzi HF, Jorge JA. 1990. $\beta$-D-glycosidase activities of Humicola grisea: biochemical and kinetic characterization of a multifunctional enzyme. Biochim. Biophys. Acta 1033: 243-249. https://doi.org/10.1016/0304-4165(90)90127-I
  21. Sharma S, Bhat TK, Dawra RKA. 2000. Spectrophotometric method for assay of tannase using rhodanine. Anal. Biochem. 279: 85-89. https://doi.org/10.1006/abio.1999.4405
  22. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  23. Hagerman AE, Butler LG. 1978. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 26: 809-812. https://doi.org/10.1021/jf60218a027
  24. Rao S, Santhakumar AB, Chinkwo KA, Wu G, Johnson SK, Blanchard CL. 2018. Characterization of phenolic compounds and antioxidant activity in sorghum grains. J. Cereal Sci. 84: 103-111. https://doi.org/10.1016/j.jcs.2018.07.013
  25. Schons PF, Battestin V, Macedo GA. 2012. Fermentation and enzyme treatments for sorghum. Braz. J. Microbiol. 1: 89-97.
  26. Goncalves HB, Riul AJ, Quiapin AC, Jorge JA, Guimaraes LHS. 2012. Characterization of a thermostable extracellular tannase produced under submerged fermentation by A. ochraceus. Electr. J. Biotechnol. 15.
  27. Antecka A, Bizukojc M, Ledakowicz S. 2016. Modern morphological engineering techniques for improving productivity of filamentous fungi in submerged cultures. World J. Microbiol. Biotechnol. 32: 193-201. https://doi.org/10.1007/s11274-016-2148-7
  28. Villena GK, Gutierrez-Correa M. 2012. Kinetic analysis of A. niger cellulase and xylanase production in biofilm and submerged fermentation. J. Microbiol. Biotechnol. Res. 2: 805-814.
  29. Melo AG, Pedroso RCF, Guimaraes LHS, Alves JGLF, Dias ES, Resende MLV, et al. 2014. The optimization of A. sp. GM4 tannase production under submerged fermentation. Adv. Microbiol. 4: 143-150. https://doi.org/10.4236/aim.2014.43019
  30. Bradoo S, Gupta R, Saxena RK. 1997. Parametric optimization and biochemical regulation of extracellular tannase from A. japonicus. Process Biochem. 32: 135-139. https://doi.org/10.1016/S0032-9592(96)00056-8
  31. Lal D, Shrivastava D, Verma HN, Gardner JJ. 2012. Production of Tannin Acyl Hydrolase (E.C. 3.1.1.20) from A. niger isolated from bark of Acacia nilotica. J. Microbiol. Biotechnol. Res. 2: 566-572.
  32. Cavalcanti RMF, Ornela PHO, Jorge JA, Guimaraes LHS. 2017. Screening, selection and optimization of the culture conditions for tannase production by endophytic fungi Isolated from caatinga. J. Appl. Biol. Biotechnol. 5: 1-9. https://doi.org/10.5296/jab.v5i2.10867
  33. Harding MW, Marques LL, Howard RJ, Olson ME. 2009. Can filamentous fungi form biofilms? Trends Microbiol. 17: 475-480. https://doi.org/10.1016/j.tim.2009.08.007
  34. Villena GK, Gutierrez-Correa M. 2006. Production of cellulase by A. niger biofilms developed on polyester cloth. Lett. Appl. Microbiol. 43: 262-268. https://doi.org/10.1111/j.1472-765X.2006.01960.x
  35. Riul AJ, Goncalves HB, Jorge JA, Guimaraes LHS. 2013. Characterization of a glucose- and solvent-tolerant extracellular tannase from A. phoenicis. J. Mol. Cat. B: Enzymatic. 85-86: 126-133. https://doi.org/10.1016/j.molcatb.2012.09.001
  36. Costa AM, Kadowaki MK, Minozzo MC, Souza CGM, Boer CG, Bracht A, et al. 2012. Production, purification and characterization of tannase from A. tamarii. Afr. J. Biotechnol. 11: 391-398.
  37. Lekha PK, Lonsane BK. 1997. Production and application of tannin acyl hydrolase: state of the art. Adv. Appl. Microbiol. 44: 215-260. https://doi.org/10.1016/S0065-2164(08)70463-5
  38. Belmares R, Contreras-Esquivel JC, Rodriguez-Herrera R, Coronel AR, Aguilar CN. 2004. Microbial production of tannase: an enzyme with potential use in food industry. LWT-Food Sci. Technol. 37: 857-864. https://doi.org/10.1016/j.lwt.2004.04.002
  39. Aguilar CN, Gutierrez-Sanchez G. 2001. Review: Sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci. Technol. Int. 7: 373-382. https://doi.org/10.1177/108201301772660411
  40. Arbenz A, Averous L. 2015. Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem. 17: 2626-2646. https://doi.org/10.1039/c5gc00282f
  41. Rodarte MP, Dias DR, Vilela DM, Schwan RF. 2011. Proteolytic activities of bacteria, yeasts and filamentous fungi isolated from coffe fruit (Coffea arabica L.). Acta Scientiarum Agronomy 33: 457-464.
  42. Caballero-Cordoba GM, Pacheco MTB, Sgarbieri VC. 1997. Composicao quimica da biomassa de levedura integral (Saccharomyces sp.) e determinacao do valor nutritivo da proteina em celulas integras ou rompidas mecanicamente. Food Sci. Technol. 17: 102-106. https://doi.org/10.1590/S0101-20611997000200007
  43. George DS, Ong CB. 2013. Improvement of tannase production under submerged fermentation by A. niger FBT1 isolated from a mangrove forest. J. Biotechnol. Comput. Biol. Bionanotechnol. 94: 451-456.
  44. Aboubakr HA, El-Sahn MA, El-Banna AA. 2013. Some factors affecting tannase production by A. niger Van Tieghem. Braz. J. Microbiol. 44: 559-567 https://doi.org/10.1590/S1517-83822013000200036
  45. Bagga J, Pramanik SK, Pandey V. 2015. Production and purification of tannase from A. aculeatus using plant derived raw tannin. Int. J. Sci. Eng. Technol. 4: 50-55.
  46. Chhokar V, Sangwan M, Beniwal V, Nehra K, Nehra KS. 2010. Effect of additives on the activity of tannase from A. awamori MTCC9299. Appl. Biochem. Biotechnol. 160: 2256-2264. https://doi.org/10.1007/s12010-009-8813-7
  47. Barthomeuf C, Regerat F, Pourrat H. 1994. Production, purification and characterization of a tannase from A. niger LCF 8. J. Ferment. Technol. 7: 320-323. https://doi.org/10.1016/0922-338X(94)90242-9
  48. Mukherjee, G.; Banerjee, R. 2006. Effects of temperature, pH and additives on the activity of tannase produced by a coculture of Rhizopus oryzae and A. foetidus. W. J. Microbiol. Biotechnol. 22: 207-212. https://doi.org/10.4014/jmb.1106.06031
  49. Kasieczka-Burnecka M, Kuc K, Kalinowska H, Knap M, Turkiewicz M. 2007. Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9. J. Appl. Biol. Biotechnol. 77: 77-89.
  50. Mahapatra K, Nanda RK, Baq SS, Banerjee R, Pandey A, Szakacs G. 2005. Purification, characterization and some studies on secondary structure of tannase from A. awamori nakazawa. Process Biochem. 40: 3251-3254. https://doi.org/10.1016/j.procbio.2005.03.034
  51. Tolentino DC, Rodrigue JAS, Pires DAD, Veriato FT, Lima LOB, Moura MMA. 2016. The quality of silage of different sorghum genotypes. Acta Scientiarum Anim. Sci. 38: 143-149. https://doi.org/10.4025/actascianimsci.v38i2.29030
  52. Beena PS, Basheer SM, Bhat SG, Bahkali AH, Chandrasekaran M. 2011. Propyl gallate synthesis using acidophilic tannase and simultaneous production of tannase and gallic acid by marine A. awamori BTMFW032. Appl. Biochem. Biotechnol. 164: 612-628. https://doi.org/10.1007/s12010-011-9162-x
  53. Pinto GAS, Gouri S, Leite SGF, Brito ES. 2005. Tanase: conceitos, producao e aplicacao. Boletim do Centro de Pesquisa e Processamento de Alimentos 23: 435-462.

Cited by

  1. Contributions of protein microenvironment in tannase industrial applicability: An in-silico comparative study of pathogenic and non-pathogenic bacterial tannase vol.6, pp.11, 2019, https://doi.org/10.1016/j.heliyon.2020.e05359
  2. Immobilization of the Tannase From Aspergillus fumigatus CAS21: Screening the Best Derivative for the Treatment of Tannery Effluent Using a Packed Bed Reactor vol.9, 2019, https://doi.org/10.3389/fbioe.2021.754061
  3. Concomitant yield optimization of tannase and gallic acid by Bacillus licheniformis KBR6 through submerged fermentation: An industrial approach vol.64, pp.2, 2019, https://doi.org/10.14232/abs.2020.2.151-158
  4. Production of Sucrolytic Enzyme by Bacillus licheniformis by the Bioconversion of Pomelo Albedo as a Carbon Source vol.13, pp.12, 2019, https://doi.org/10.3390/polym13121959
  5. Overview on the hydrodynamic conditions found in industrial systems and its impact in (bio)fouling formation vol.418, 2019, https://doi.org/10.1016/j.cej.2021.129348
  6. Regulation of Cunninghamella spp. biofilm growth by tryptophol and tyrosol vol.3, 2021, https://doi.org/10.1016/j.bioflm.2021.100046