DOI QR코드

DOI QR Code

Bioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw

  • Kondaveeti, Sanath (Department of Chemical Engineering, Konkuk University) ;
  • Pagolu, Raviteja (Department of Chemical Engineering, Konkuk University) ;
  • Patel, Sanjay K.S. (Department of Chemical Engineering, Konkuk University) ;
  • Kumar, Ashok (Department of Chemical Engineering, Konkuk University) ;
  • Bisht, Aarti (Department of Chemical Engineering, Konkuk University) ;
  • Das, Devashish (Department of Chemical Engineering, Konkuk University) ;
  • Kalia, Vipin Chandra (Department of Chemical Engineering, Konkuk University) ;
  • Kim, In-Won (Department of Chemical Engineering, Konkuk University) ;
  • Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University)
  • Received : 2019.09.23
  • Accepted : 2019.10.27
  • Published : 2019.11.28

Abstract

The use of lignocellulosic biomass such as rice straw can help subsidize the cost of producing value-added chemicals. However, inhibitory compounds, such as phenolics, produced during the pre-treatment of biomass, hamper the saccharification process. Laccase and electrochemical stimuli are both well known to reduce phenolic compounds. Therefore, in this study, we implemented a bioelectrochemical detoxification system (BEDS), a consolidated electrochemical and enzymatic process involving laccase, to enhance the detoxification of phenolics, and thus achieve a higher saccharification efficiency. Saccharification of pretreated rice straw using BEDS at 1.5 V showed 90% phenolic reduction (Phr), thereby resulting in a maximum saccharification yield of 85%. In addition, the specific power consumption when using BEDS (2.2 W/Kg Phr) was noted to be 24% lower than by the electrochemical process alone (2.89 W/kg Phr). To the best of our knowledge, this is the first study to implement BEDS for reduction of phenolic compounds in pretreated biomass.

Keywords

References

  1. Singh RK, Singh R, Sivakumar D, Kondaveeti S, Kim T, Li J, et al. 2018. Insights into cell-Free conversion of $CO_2$ to chemicals by a multienzyme cascade reaction. ACS Catal. 12: 11085-11093.
  2. Jin W, Lin H, Gao H, Guo Z, Li J, Xu Q, et al. 2019. N-Acyl-Homoserine lactone quorum sensing switch from acidogenesis to solventogenesis during the fermentation process in serratia marcescens MG1. J. Microbiol. Biotechnol. 29: 596-606. https://doi.org/10.4014/jmb.1810.10026
  3. Otari S, Pawar S, Patel SK, Singh RK, Kim S-Y, Lee JH, et al. 2017. Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: characterization, antimicrobial activity, and toxicity studies. J. Microbiol. Biotechnol. 27: 731-738. https://doi.org/10.4014/jmb.1610.10019
  4. Guo Z, Zhao X, He Y, Yang T, Gao H, Li G, et al. 2017. Efficient (3R)-acetoin production from meso-2, 3-butanediol using a new whole-cell biocatalyst with co-expression of meso-2, 3-butanediol dehydrogenase, NADH oxidase, and Vitreoscilla hemoglobin. J. Microbiol. Biotechnol. 27: 92-100. https://doi.org/10.4014/jmb.1608.08063
  5. Zhu S, Huang W, Huang W, Wang K, Chen Q, Wu Y. 2015. Pretreatment of rice straw for ethanol production by a twostep process using dilute sulfuric acid and sulfomethylation reagent. Appl. Energy 154: 190-196. https://doi.org/10.1016/j.apenergy.2015.05.008
  6. Karimi K, Emtiazi G, Taherzadeh MJ. 2006. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb. Technol. 40: 138-144. https://doi.org/10.1016/j.enzmictec.2005.10.046
  7. Kumar A, Patel SK, Mardan B, Pagolu R, Lestari R, Jeong SH, et al. 2018. Immobilization of xylanase using a proteininorganic hybrid system. J. Microbiol. Biotechnol. 28: 638-644. https://doi.org/10.4014/jmb.1710.10037
  8. Shobana S, Kumar G, Bakonyi P, Saratale GD, Al-Muhtaseb AaH, Nemestothy N, et al. 2017. A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. Bioresour. Technol. 244: 1341-1348. https://doi.org/10.1016/j.biortech.2017.05.172
  9. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M. 2011. Deactivation of cellulases by phenols. Enzyme Microb. Technol. 48: 54-60. https://doi.org/10.1016/j.enzmictec.2010.09.006
  10. Lee KM, Min K, Choi O, Kim K-Y, Woo HM, Kim Y, et al. 2015. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation. Bioresour. Technol. 187: 228-234. https://doi.org/10.1016/j.biortech.2015.03.129
  11. Moreno AD, Ibarra D, Alvira P, Tomas-Pejo E, Ballesteros M. 2015. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit. Rev. Biotechnol. 35: 342-354. https://doi.org/10.3109/07388551.2013.878896
  12. Jönsson LJ, Alriksson B, Nilvebrant N-O. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6: 16. https://doi.org/10.1186/1754-6834-6-16
  13. Moreno AD, Ibarra D, Fernandez JL, Ballesteros M. 2012. Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour. Technol. 106: 101-109. https://doi.org/10.1016/j.biortech.2011.11.108
  14. Fillat U, Ibarra D, Eugenio ME, Moreno AD, Tomas-Pejo E, Martín-Sampedro R. 2017. Laccases as a potential tool for the efficient conversion of lignocellulosic biomass: a review. Fermentation 3(2): 17. https://doi.org/10.3390/fermentation3020017
  15. Kalyani D, Tiwari MK, Li J, Kim SC, Kalia VC, Kang YC, et al. 2015. A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and Its application in the hydrolysis of biomass. PLoS One 10: e0120156. https://doi.org/10.1371/journal.pone.0120156
  16. Patel SKS, Choi SH, Kang YC, Lee J-K. 2016. Large-scale aerosol-assisted synthesis of biofriendly $Fe_2O_3$ yolk–shell particles: a promising support for enzyme immobilization. Nanoscale 8: 6728-6738. https://doi.org/10.1039/C6NR00346J
  17. Sharifian H, Kirk DW. 1986. Electrochemical oxidation of phenol. J. Electrochem. Soc. 133: 921-924. https://doi.org/10.1149/1.2108763
  18. Enache TA, Oliveira-Brett AM. 2011. Phenol and parasubstituted phenols electrochemical oxidation pathways. J. Electroanal. Chem. 655: 9-16. https://doi.org/10.1016/j.jelechem.2011.02.022
  19. Kumar V, Patel SKS, Gupta RK, Otari SV, Gao H, Lee J-K, et al. 2019. Enhanced saccharification and fermentation of rice straw by reducing the c oncentration of phenolic compounds using an immobilized enzyme cocktail. Biotechnol. J. 14(6): e1800468.
  20. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  21. Dhiman SS, Haw J-R, Kalyani D, Kalia VC, Kang YC, Lee J-K. 2015. Simultaneous pretreatment and saccharification: Green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour. Technol. 179: 50-57. https://doi.org/10.1016/j.biortech.2014.11.059
  22. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M. 2010. Inhibition of cellulases by phenols. Enzyme Microb. Technol. 46: 170-176. https://doi.org/10.1016/j.enzmictec.2009.11.001
  23. Singh RK, Tiwari MK, Singh R, Lee J-K. 2013. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int. J. Mol. Sci. 14: 1232-1277. https://doi.org/10.3390/ijms14011232
  24. Shin K, Kim YH, Jeya M, Lee J-K, Kim Y-S. 2010. Purification and characterization of a thermostable cellobiohydrolase from Fomitopsis pinicola. J. Microbiol. Biotechnol. 20: 1681-1688. https://doi.org/10.4014/jmb.1008.08009
  25. Jeya M, Lee J-K. 2013. Optimization of $\beta$-glucosidase production by a strain of Stereum hirsutum and its application in enzymatic saccharification. J. Microbiol. Biotechnol. 23: 351-356. https://doi.org/10.4014/jmb.1210.10060
  26. Lee KM, Kalyani D, Tiwari MK, Kim T-S, Dhiman SS, Lee J-K, et al. 2012. Enhanced enzymatic hydrolysis of r ice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour. Technol. 123: 636-645. https://doi.org/10.1016/j.biortech.2012.07.066
  27. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  28. Jin S, Chen H. 2006. Structural properties and enzymatic hydrolysis of rice straw. Process Biochem. 41: 1261-1264. https://doi.org/10.1016/j.procbio.2005.12.022
  29. Shleev S, Jarosz-Wilkolazka A, Khalunina A, Morozova O, Yaropolov A, Ruzgas T, et al. 2005. Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry 67: 115-124. https://doi.org/10.1016/j.bioelechem.2005.02.004
  30. Borole AP, Mielenz JR, Vishnivetskaya TA, Hamilton CY. 2009. Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol. Biofuels 2: 7. https://doi.org/10.1186/1754-6834-2-7
  31. Chu YY, Qian Y, Wang WJ, Deng XL. 2012. A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation. J. Hazard. Mater. 199-200: 179-185. https://doi.org/10.1016/j.jhazmat.2011.10.079
  32. Kuk SK, Ham Y, Gopinath K, Boonmongkolras P, Lee Y, Lee YW, et al. 2019. Continuous 3D Titanium Nitride Nanoshell Structure for Solar-Driven Unbiased Biocatalytic $CO_2$ Reduction. Adv. Energy Mater. 9: 1900029. https://doi.org/10.1002/aenm.201900029
  33. Kondaveeti S, Abu-Reesh IM, Mohanakrishna G, Pant D, He Z. 2019. Utilization of residual organics of Labaneh whey for renewable energy generation through bioelectrochemical processes: Strategies for enhanced substrate conversion and energy generation. Bioresour. Technol. 286: 121409. https://doi.org/10.1016/j.biortech.2019.121409
  34. Lee N-K, Paik H-D. 2017. Bioconversion using lactic acid bacteria: ginsenosides, GABA, and phenolic compounds. J. Microbiol. Biotechnol. 27: 869-877. https://doi.org/10.4014/jmb.1612.12005
  35. Dahili LA, Nagy E, Feczko T. 2017. 2, 4-Dichlorophenol enzymatic removal and its kinetic study using horseradish peroxidase crosslinked to nano spray-dried poly (lactic-coglycolic acid) fine particles. J. Microbiol. Biotechnol. 27: 768-774. https://doi.org/10.4014/jmb.1606.06002
  36. Lee J-S, Hong S-K, Lee C-R, Nam S-W, Jeon S-J, Kim Y-H. 2019. Production of Ethanol from Agarose by Unified Enzymatic Saccharification and Fermentation in Recombinant Yeast. J. Microbiol. Biotechnol. 29: 625-632. https://doi.org/10.4014/jmb.1902.02012
  37. Sunwoo IY, Nguyen TH, Sukwong P, Jeong G-T, Kim S-K. 2018. Enhancement of ethanol production via hyper thermal acid hydrolysis and co-fermentation using waste seaweed from Gwangalli Beach, Busan, Korea. J. Microbiol. Biotechnol. 28: 401-408. https://doi.org/10.4014/jmb.1708.08041
  38. Lee W-H, Jin Y-S. 2017. Evaluation of ethanol production activity by engineered Saccharomyces cerevisiae fermenting cellobiose through the phosphorolytic pathway in simultaneous saccharification and fermentation of cellulose. J. Microbiol. Biotechnol. 27: 1649-1656. https://doi.org/10.4014/jmb.1705.05039
  39. Zou Z, Zhao Y, Zhang T, Xu J, He A, Deng Y. 2018. Efficient isolation and characterization of a cellulase hyperproducing mutant strain of Trichoderma reesei. J. Microbiol. Biotechnol. 28: 1473-1481. https://doi.org/10.4014/jmb.1805.05009
  40. Yang F, Gong Y, Liu G, Zhao S, Wang J. 2015. Enhancing cellulase production in thermophilic fungus Myceliophthora thermophila ATCC42464 by RNA interference of cre1 gene expression. J. Microbiol. Biotechnol. 25: 1101-1107. https://doi.org/10.4014/jmb.1501.01049

Cited by

  1. Bioprocesses for the recovery of bioenergy and value-added products from wastewater: A review vol.300, 2021, https://doi.org/10.1016/j.jenvman.2021.113831
  2. Tolerance of Trichosporon cutaneum to lignin derived phenolic aldehydes facilitate the cell growth and cellulosic lipid accumulation vol.343, 2019, https://doi.org/10.1016/j.jbiotec.2021.09.009