DOI QR코드

DOI QR Code

Swirl Number of Radial Swirler Design for Combustor in Aero Gas Turbine Engine

항공용 가스터빈엔진 연소기 내부 반경 방향 스월러의 스월수 계산

  • Choi, Myeung Hwan (Graduate School, Korea Aerospace University) ;
  • Shin, Dongsoo (Graduate School, Korea Aerospace University) ;
  • Yoon, Youngbin (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Koo, Jaye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2019.08.12
  • Accepted : 2019.11.19
  • Published : 2019.12.01

Abstract

Eco-friendly gas turbine combustors are getting attention due to emission regulations. Swirler is important design factor for flame stability and flashback inside the combustor. Design methods of the axial swirler and the radial swirler were discussed and the suitability of the swirl number calculation considering the geometric design variables and the flow loss was examined in the radial swirl for gas turbine combustor. The swirl number of flow was calculated by computational fluid dynamics and compared with swirl number according to each design method.

최근 배기가스규제로 인하여 친환경 가스터빈연소기가 주목받고 있다. 이때 연소기 내부의 스월러는 화염안정성 및 역화에 매우 중요한 설계 인자가 된다. 기존 연구자들이 제시한 축 방향 스월러와 반경 방향 스월러의 설계방법에 대하여 고찰하고 다양한 가스터빈용 반경 방향 스월러 중 기하학적 설계변수를 고려한 스월수 계산과 유동손실을 고려한 스월수 계산의 적합성을 검토하였다. 전산유체역학을 통해 스월유동의 스월수를 계산하고 설계방법에 따라 각각 비교하였다.

Keywords

References

  1. Lefebvre, A. H., Gas Turbine Combustion, 3rd Ed., CRC Press, Boca Raton, FL, 2010.
  2. Lefebvre A. H., "Lean premixed/prevaporized combustion," NASA CP-2016, 1977.
  3. Al-kabie, H. S., Radial swirlers for low emissions gas turbine combustion, PhD Thesis, University of Leeds, 1989.
  4. Chigier, N. A., and Beer, J. M., "Combustion Aerodynamics," 2nd ed., Krieger Publishing Company, U.S.A., 1983.
  5. ICAO (International Civil Aviation Organization), "Annual Report of the Council 2012," World Wide Web location, https://www. icao.int/publications/Documents/10001_en.pdf, 2013.
  6. Charest, M. R. J., Gauthier, J. E. D., and Huang, X., "Design methodology for a lean premixed prevaporized can combustor," ASME Turbo Expo 2006: Power for Land, Se, and Air, Barcelona, Spain, May 2006, pp. 781-791.
  7. Gupta, A. K., Lilley, D. G., and Syred, N,. "Swirl flows," Kent, England, Abacus Press, 1984.
  8. Candel, S., Durox, D., Schuller, T., Bourgouin, J. F., and Moeck, J. P., "Dynamics of swirling flames," Annual review of fluid mechanics, Vol. 46, 2014, pp. 147-173. https://doi.org/10.1146/annurev-fluid-010313-141300
  9. Galley, D., Ducruix, S., Lacas, F., and Veynante, D., "Mixing and stabilization study of a partially premixed swirling flame using laser induced fluorescence," Combustion and Flame, Vol. 158, No. 1, 2011, pp. 155-171. https://doi.org/10.1016/j.combustflame.2010.08.004
  10. Alkabie, H. S., Andrews, G. E., and Ahmad, N. T., "Lean low NOx primary zones using radial swirlers," ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition, June 1988, pp. V003T06A027.
  11. Jaafar, M. N., Jusoff, K., Osman, M. S., and Ishak, M. S. A., "Combustor aerodynamic using radial swirler," International Journal of Physical Sciences, Vol. 6, No. 13, 2011, pp. 3091-3098.
  12. Choi, M. H., Shin, D., Song, W., Son, M., and Koo, J., "Effects of Swirl Flow on Spray Characteristics of Jets In Crossflow Injector," Proceeding of the 2016 Korean Society for Precision Engineering Fall Conference, Nov. 2016, pp. 261-262.
  13. Escue, A., and Cui, J., "Comparison of turbulence models in simulating swirling pipe flows," Applied Mathematical Modelling, Vol. 34, No. 10, 2010, pp. 2840-2849. https://doi.org/10.1016/j.apm.2009.12.018
  14. Albouze, G., Poinsot, T., and Gicquel, L., "Chemical kinetics modeling and LES combustion model effects on a perfectly premixed burner," Comptes Rendus Mécanique, Vol. 337, No. 6-7, 2009, pp. 318-328. https://doi.org/10.1016/j.crme.2009.06.010
  15. Wang, S., Yang, V., Hsiao, G., Hsieh, S. Y., and Mongia, H. C., "Large-eddy simulations of gas-turbine swirl injector flow dynamics," Journal of Fluid Mechanics, 2007, Vol. 583, pp. 99-122. https://doi.org/10.1017/S0022112007006155
  16. Alkabie, H. S., and Andrews, G. E., "Reduced NOx emissions using low radial swirler vane angles," ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, June 1991, pp. V003T06A032.