DOI QR코드

DOI QR Code

중적외선 광센서 기술동향

Technological Trend of Mid-infrared Optical Sensors

  • 발행 : 2018.12.01

초록

Mid-infrared optical sensors have a number of compelling advantages for remote sensing and the simultaneous measurement of mixtures. However, they still have difficulties in accurate detection owing to signal interferences among a large number of molecular fingerprints in the mid-infrared band, which result in very slow commercialization. Higher sensitivity and higher selectivity are required to overcome this obstruction in measurement technology. In this paper, we review and analyze the trends of mid-infrared sensor technologies enhancing the sensitivity and selectivity.

키워드

HJTOCM_2018_v33n6_41_f0004.png 이미지

(그림 1) 혼합물의 신호간섭(a) TNT, RDX, PETN의 1:1 혼합물의 흡수스펙트럼과 (b) 모노크로미터를 이용한 광원을 사용한 개별물질의 흡수스펙트럼, (c) QCL 파장가변광원을 이용한 개별 흡수스펙트럼

HJTOCM_2018_v33n6_41_f0005.png 이미지

(그림 2) CRDS의 개념도(공진기에 광을 입사하여 시간에 따른 광량의 변화를 측정하여 셀내에 존재하는 물질의 흡수율 추출)

HJTOCM_2018_v33n6_41_f0006.png 이미지

(그림 3) 현재 사용되는 PAS의 개략도

HJTOCM_2018_v33n6_41_f0007.png 이미지

(그림 4) PAS의 보고된 NEC결과

HJTOCM_2018_v33n6_41_f0008.png 이미지

(그림 5) DFB QCL 기반의 고정밀 분광

HJTOCM_2018_v33n6_41_f0009.png 이미지

(그림 6) 광빗살발생기기반의 분광(반사경을 사용한 open path 분광법으로 광경로는 ~2km이며, 2개의 광빗살발생기 사용하여 두 광빗살의 간격차를 통해 고정밀 분광 구현)

<표 1> Multipass cell 비교

HJTOCM_2018_v33n6_41_t0001.png 이미지

참고문헌

  1. S. Borri et al., "Intracavity Quartz-Enhanced Photo-Acoustic Sensor," Appl. Phys. Lett., vol. 104, no. 9, 2014, pp. 091114:1-091114:4.
  2. S. Kim, D. Lee, and T. Thundat, "Photothermal Cantilever Deflection Spectroscopy," EPJ Tech. Instrum., vol. 1, no. 7, 2014, pp. 1-7. https://doi.org/10.1140/epjti1
  3. FIGARO, "Gas Sensors & Modules," https://www.figaro.co.jp./en/product/sensor/
  4. J. Wojtas et al., "Mid-infrared Trace Gas Sensor Technology Based on Intracavity Quartz-Enhanced Photoacoustic Spectroscopy," Sensors, vol. 17, no. 3, 2017, pp. 513:1-513:9.
  5. P. Sahay, S. T. Scherrer, and C. Wang, "Measurements of the weak UV Absorptions of Isoprene and Acetone at 261-275nm Using Cavity Ringdown Spectroscopy for Evaluation of a Potential Portable Ringdown Breath Analyzer," Sensors, vol.13, no. 7, 2013, pp. 8170-8187. https://doi.org/10.3390/s130708170
  6. M. Pradhan et al., "Trace Detection of $C_2H_2$ in Ambient Air Using Continuous Wave Cavity Ring-Down Spectroscopy Combined with Sample Pre-concentration," Appl. Phys. B, vol. 90, no. 1, 2008, pp. 1-9. https://doi.org/10.1007/s00340-007-2833-1
  7. A. Maity et al., "Cavity Ring-Down Spectroscopy Using and EC-QCL Operating at $7.5{\mu}m$ for Direct Monitoring of Methane Isotopes in Air," Laser Phys. Lett., vol. 14, no. 11, 2017, pp. 115701:1-115701:7.
  8. M. Baudelet ed., Laser Spectroscopy for Sensing: Fundamentals, Techniques and Applications, Woodhead Publishing: Amsterdam, Netherlands, 2014, pp. 165-207.
  9. T. Tomberg et al., "Sub-parts-per Trillion Level Sensitivity in Trace Gas Detection by Cantilever-Enhanced Photoacoustic Spectroscopy," Scientific Reports, vol. 8, 2018, pp. 1848:1-1848:7.
  10. J. Li et al., "Simultaneous Atmospheric CO, $N_2O$ and $H_2O$ Detection Using a Single Quantum Cascade Laser Sensor Based on Dual Spectroscopy Techniques," Sens. Actuators B: Chem., vol.231, 2016, pp.723-732. https://doi.org/10.1016/j.snb.2016.03.089
  11. G.B. Rieker et al., "Frequency-Comb-Based Remote Sensing of Greenhouse Gases Over Kilometer Air Paths," Optica, vol. 1, no. 5, 2014, pp. 290-280. https://doi.org/10.1364/OPTICA.1.000290
  12. K. Luke et al., "Broadband Mid-infrared Frequency Comb Generation in a $Si_3N_4$ Microresonator," Opt. Lett., vol. 40, no. 21, 2015, pp. 4823-4826. https://doi.org/10.1364/OL.40.004823
  13. MIRPHAB homepage, https://www.mirphab.eu/mirphab-offer/
  14. V. Singh et al., "Mid-infrared Materials and Devices on a Si Platform for Optical Sensing," Sci. Technol. Adv. Mater., vol. 15, no. 1, 2014, pp. 014603:1-014603:15.
  15. J. Kang, M. Takenaka, and S. Takagi, "Novel Ge Waveguide Platform on Ge-on-Insulator Wafer for Mid-infrared Photonic Integrated Circuits," Optics Exp., vol. 24, no. 11, 2016, pp. 11855-11864. https://doi.org/10.1364/OE.24.011855
  16. A. Gutierrez-Arroyo et al., "Optical Characterization at $7.7{\mu}m$ of an Integrated Platform Based on Chalcogenide Waveguides for Sensing Applications in the Mid-infrared," Optics Exp., vol. 24, no. 20, 2016, pp. 23109-23117. https://doi.org/10.1364/OE.24.023109