References
- Jones P, Vogt T. 2001. Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213: 164-174. https://doi.org/10.1007/s004250000492
- Osmani SA, B ak S , M?ller BL. 2 009. Substrate specif icity of plant UDP-dependent glycosyltransferase predicted from crystal structures and homology modeling. Phytochemitsry 70: 325-347. https://doi.org/10.1016/j.phytochem.2008.12.009
- Panche AN, Diwan AB, Chandra SR. 2016. Flavonoids: an overview. J. Nutr. Sci. 5: e47. https://doi.org/10.1017/jns.2016.41
- Veitch NC, Grayer RJ. 2011. Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep. 28: 1626-1695. https://doi.org/10.1039/c1np00044f
- Kim BG, Yang SM, Kim SY, Cha MN, Ahn J-H. 2015. Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives. Appl. Microbiol. Biotechnol. 99: 2979-2988. https://doi.org/10.1007/s00253-015-6504-6
- Han S-I, Lee J, Kim MS, Chung SJ, Kim J-H. 2017. Molecular cloning and characterization of a flavonoid glucosyltransferase from Byungkyool (Citrus platymamma hort. ex Tanaka). Appl. Biol. Chem. 60: 49-55.
- Bowles D, Isayenkova J, Lim EK, Poppenberger B. 2005. Glycosyltransferases: managers of small molecules. Curr. Opin. Plant Biol. 8: 254-263. https://doi.org/10.1016/j.pbi.2005.03.007
- Cho AR, An DG, Lee Y, Ahn J-H. 2016. Biotransformation of quercetin to quercetin 3-O-gentiobioside using engineered Escherichia coli. Appl. Biol. Chem. 59: 689-693. https://doi.org/10.1007/s13765-016-0212-5
- Pabst M, Grass J, Fischl, R, Leonard R, Jin C, Hinterkorner G, et al. 2010. Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Anal. Chem. 82: 9782-9788. https://doi.org/10.1021/ac101975k
- Han SH, Kim B-G, Yoon JA, Chong Y, Ahn J-H. 2014. Synthesis of flavonoid O-pentosides by Escherichia coli through engineering nucleotide sugar synthesis pathway and glycosyltransferase. Appl. Env. Microbiol. 80: 2754-2762. https://doi.org/10.1128/AEM.03797-13
- Kim BG, Kim HJ, Ahn J-H. 2012. Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli. J. Agr. Food Chem. 60: 11143-11148. https://doi.org/10.1021/jf302123c
- Choi HJ, Kim JH, Lee CH, Ahn YJ, Song JH, Baek SH, et al. 2009. Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus. Antiviral Res. 81: 77-81. https://doi.org/10.1016/j.antiviral.2008.10.002
- Song JH, Shim JK, Choi HJ. 2011. Quercetin 7-rhamnoside reduces porcine epidemic diarrhea virus replication via independent pathway of viral induced reactive oxygen species. Virol. J. 8: 460. https://doi.org/10.1186/1743-422X-8-460
- Kim SY, Lee HR, Park K-s, Kim BG, Ahn J-H. 2015. Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid O-glucuronides and flavonoid O-galactoside. Appl. Microbiol. Biotechnol. 99: 2233-2242. https://doi.org/10.1007/s00253-014-6282-6
- Kim HJ, Kim BG, Ahn J-H. 2013. Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases. Appl. Microbiol. Biotechnol. 97: 5275-5282. https://doi.org/10.1007/s00253-013-4844-7
- Sim GY, Yang SM, Kim BG, Ahn J-H. 2015. Bacterial synthesis of N-hydroxycinnamoyl phenethylamines and tyramines. Microb. Cell Fact. 14: 162. https://doi.org/10.1186/s12934-015-0353-y
- Urgaonkar S, Shaw JT. 2007. Synthesis of kaempferitrin. J. Org. Chem. 72: 4582-4585 https://doi.org/10.1021/jo070502w
- Yang Y, Sun J, Yang Z, Han W, Zhang W-D, Yu B. 2012. Efficient synthesis of kaempferol 3,7-O-bisglycosides via successive glycosylation with glycosyl ortho-alkynylbenzoates and trifluoroacetimidates. Tetrahedron Lett. 53: 2773-2776. https://doi.org/10.1016/j.tetlet.2012.03.103
- Jones JA, Vernacchio VR, Collins SM, Shirke AN, Xiu Y, Englaender JA, et al. 2017. Complete biosynthesis of anthocyanins using E. coli polycultures. MBio 8: e00621-17.
- Kim B-G, Sung SH, Ahn J-H. 2012. Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2. Appl. Microbiol. Biotechnol. 93: 2447-2453. https://doi.org/10.1007/s00253-011-3747-8
Cited by
- Immunocontraceptive Effects in Male Rats Vaccinated with Gonadotropin-Releasing Hormone-I and -II Protein Complex vol.29, pp.4, 2019, https://doi.org/10.4014/jmb.1901.01067
- A Review on Structure, Modifications and Structure-Activity Relation of Quercetin and Its Derivatives vol.30, pp.1, 2018, https://doi.org/10.4014/jmb.1907.07003
- Controllable Iterative β-Glucosylation from UDP-Glucose by Bacillus cereus Glycosyltransferase GT1: Application for the Synthesis of Disaccharide-Modified Xenobiotics vol.69, pp.48, 2021, https://doi.org/10.1021/acs.jafc.1c05788