DOI QR코드

DOI QR Code

Application and Analysis of Rhizopus oryzae Mycelia Extending Characteristic in Solid-state Fermentation for Producing Glucoamylase

  • Tang, Xianghua (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Luo, Tianbao (School of Life Science, Yunnan Normal University) ;
  • Li, Xue (School of Life Science, Yunnan Normal University) ;
  • Yang, Huanhuan (School of Life Science, Yunnan Normal University) ;
  • Yang, Yunjuan (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Li, Junjun (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Xu, Bo (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University) ;
  • Huang, Zunxi (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
  • Received : 2018.05.15
  • Accepted : 2018.09.25
  • Published : 2018.11.28

Abstract

Enhanced application of solid-state fermentation (SSF) in industrial production and the influence of SSF of Rhizopus K1 on glucoamylase productivity were analyzed using the flat band method. A growth model was implemented through SSF of Rhizopus K1 in this experiment, and spectrophotometric method was used to determine glucoamylase activity. Results showed that in bran and potato culture medium with 70% moisture in a loose state, ${\mu}$ of mycelium reached to $0.15h^{-1}$ after 45 h of culture in a thermostatic water bath incubator at $30^{\circ}C$. Under a low-magnification microscope, mycelial cells appeared uniform, bulky with numerous branches, and were not easily ruptured. The generated glucoamylase activity reached to 55 U/g (dry basis). This study has good utilization value for glucoamylase production by Rhizopus in SSF.

Keywords

References

  1. Galliano H, Gilbert G, Boudet AM. 1990. Lignin biodegradation by cultures of Rigidoporus lignosus in solid state conditions. FEMS Microbiol. Lett. 67: 295-299. https://doi.org/10.1111/j.1574-6968.1990.tb04036.x
  2. Vong WC, Hua XY, Liu S-Q. 2018. Solid-state fermentation with Rhizopus oligosporus and Yarrowia lipolytica improved nutritional and flavour properties of okara. LWT-Food. Sci. Technol. 90: 316-322. https://doi.org/10.1016/j.lwt.2017.12.050
  3. Pathania S, Sharma N, Handa S. 2018. Utilization of horticultural waste (Apple Pomace) for multiple carbohydrase production from Rhizopus delemar F2 under solid state fermentation. J. Genet. Eng. Biotechnol. 16: 181-189. https://doi.org/10.1016/j.jgeb.2017.10.013
  4. Saito K, Hasa Y, Abe H. 2012. Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. J. Biosci. Bioeng. 114: 166-169. https://doi.org/10.1016/j.jbiosc.2012.03.007
  5. Lennartsson PR, Taherzadeh MJ, Edebo L. 2014. Rhizopus A2 - Batt, Carl A, pp. 284-290. In Tortorello ML (ed.), Encyclopedia of Food Microbiology (Second Edition), Ed. Academic Press, Oxford.
  6. Londoño-Hernandez L, Ramirez-Toro C, Ruiz HA, Ascacio-Valdes JA, Aguilar-Gonzalez MA, Rodríguez-Herrera R, et al. 2017. Rhizopus oryzae - Ancient microbial resource with importance in modern food industry. Int. J. Food Microbiol. 257: 110-127. https://doi.org/10.1016/j.ijfoodmicro.2017.06.012
  7. Shiraga S, Ueda M, Takahashi S, Tanaka A. 2002. Construction of the combinatorial library of Rhizopus oryzae lipase mutated in the lid domain by displaying on yeast cell surface. J. Mol. Catal. B-Enzym. 17: 167-173. https://doi.org/10.1016/S1381-1177(02)00024-3
  8. Nishise H, Fuji A, Ueno M, Vongsuvanlert V, Tani Y. 1988. Production of raw cassava starch-digestive glucoamylase by Rhizopus sp. in liquid culture. J. Ferment. Technol. 66: 397-402. https://doi.org/10.1016/0385-6380(88)90005-2
  9. Ozturkoglu-Budak S, Wiebenga A, Bron PA, de Vries RP. 2016. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese. Int. J. Food Microbiol. 237: 17-27. https://doi.org/10.1016/j.ijfoodmicro.2016.08.007
  10. Aikat K, Bhattacharyya BC. 2001. Protease production in solid state fermentation with liquid medium recycling in a stacked plate reactor and in a packed bed reactor by a local strain of Rhizopus oryzae. Process. Biochem. 36: 1059-1068. https://doi.org/10.1016/S0032-9592(01)00131-5
  11. Canet A, Benaiges MD, Valero F, Adlercreutz P. 2017. Exploring substrate specificities of a recombinant Rhizopus oryzae lipase in biodiesel synthesis. New Biotechnol. 39 (Part A): 59-67. https://doi.org/10.1016/j.nbt.2017.07.003
  12. Pashangeh K, Akhond M, Karbalaei-Heidari HR, Absalan G. 2017. Biochemical characterization and stability assessment of Rhizopus oryzae lipase covalently immobilized on aminofunctionalized magnetic nanoparticles. Int. J. Biol. Macromol. 105 (Part 1): 300-307. https://doi.org/10.1016/j.ijbiomac.2017.07.035
  13. Goldberg I, Rokem JS, Pines O. 2006. Organic acids: old metabolites, new themes. J. Chem. Technol. Biotechnol. 81: 1601-1611. https://doi.org/10.1002/jctb.1590
  14. Yang ST, Zhang K, Zhang B, Huang H. 2011. Fumaric Acid, pp. 63-177. Comprehensive Biotechnology, Elsevier.
  15. Wang C-Y, Lin C-T, Sheu D-C, Liu C-Y. 2014. l-Lactic acid fermentation by culture of Rhizopus oryzae using ammonia as neutralizing agent. J. Taiwan Inst. Chem. E. 45: 1-5. https://doi.org/10.1016/j.jtice.2013.04.008
  16. Zheng Y, Wang Y, Zhang J, Pan J. 2016. Using tobacco waste extract in pre-culture medium to improve xylose utilization for l-lactic acid production from cellulosic waste by Rhizopus oryzae. Bioresour. Technol. 218: 344-350. https://doi.org/10.1016/j.biortech.2016.06.071
  17. Machado de Castro A, Fragoso dos Santos A, Kachrimanidou V, Koutinas AA, Freire DMG. 2018. Chapter 10 - Solid-State Fermentation for the Production of Proteases and Amylases and Their Application in Nutrient Medium Production A2 - Pandey, Ashok, pp. 185-210. In Larroche C, Soccol CR (eds.), Current Developments in Biotechnology and Bioengineering, Ed. Elsevier.
  18. Schutyser MAI, de Pagter P, Weber FJ, Briels WJ, Boom RM, Rinzema A. 2003. Substrate aggregation due to aerial hyphae during discontinuously mixed solid-state fermentation with Aspergillus oryzae: Experiments and modeling. Biotechnol. Bioeng. 83: 503-513. https://doi.org/10.1002/bit.10693
  19. Sugai-Guerios MH, Balmant W, Krieger N, Furigo Junior A, Mitchell DA. 2016. Colonization of solid particles by Rhizopus oligosporus and Aspergillus oryzae in solid-state fermentation involves two types of penetrative hyphae: a model-based study on how these hyphae grow. Biochem. Eng. J. 114: 173-182. https://doi.org/10.1016/j.bej.2016.07.005
  20. Xu Q, Fu Y, Li S, Jiang L, Rongfeng G, Huang H. 2018. Integrated transcriptomic and metabolomic analysis of Rhizopus oryzae with different morphologies. Process Biochem. 64: 74-82. https://doi.org/10.1016/j.procbio.2017.10.001
  21. Costa JAV, Treichel H, Kumar V, Pandey A. 2018. Chapter 1 - Advances in Solid-State Fermentation, pp. 1-17. Current Developments in Biotechnology and Bioengineering, Ed. Elsevier.
  22. Vaseghi Z, Najafpour GD, Mohseni S, Mahjoub S. 2013. Production of active lipase by Rhizopus oryzae from sugarcane bagasse: solid state fermentation in a tray bioreactor. Int. J. Food Sci. Technol. 48: 283-289. https://doi.org/10.1111/j.1365-2621.2012.03185.x
  23. Stertz SC, Soccol CR, Raimbault M, Pandey A, Rodriguez- Leon JA. 1999. Growth kinetics of Rhizopus formosa MUCL 28422 on raw cassava flour in solid state fermentation. J. Chem. Technol. Biot. 74: 580-586. https://doi.org/10.1002/(SICI)1097-4660(199906)74:6<580::AID-JCTB81>3.0.CO;2-E
  24. Zhao H-M, Guo X-N, Zhu K-X. 2017. Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chem. 217: 28-36. https://doi.org/10.1016/j.foodchem.2016.08.062
  25. Varzakas TH, Roussos S, Arvanitoyannis IS. 2008. Glucoamylases production of Aspergillus niger in solid state fermentation using a continuous counter-current reactor. Int. J. Food. Sci. Technol. 43: 1159-1168. https://doi.org/10.1111/j.1365-2621.2007.01582.x
  26. Wickens GE. 2001. Human Food and Food Additives, pp. 151-207. In Wickens GE (ed.), Economic Botany: Principles and Practices, Ed. Springer Netherlands, Dordrecht.
  27. de Andrade Silva CA, Lacerda MPF, Leite RSR, Fonseca GG. 2014. Physiology of Lichtheimia ramosa obtained by solidstate bioprocess using fruit wastes as substrate. Bioproc. Biosyst. Eng. 37: 727-734. https://doi.org/10.1007/s00449-013-1043-y
  28. Singh SK, Sczakas G, Soccol CR, Pandey A. 2008. Production of Enzymes by Solid-state Fermentation, pp. 183-204. In Pandey A, Soccol CR, Larroche C (eds.), Current Developments in Solid-state Fermentation, Ed. Springer New York, New York, NY.
  29. Shimada Y, Maruyama K, Sugihara A, Baba T, Komemushi S, Moriyama S, et al. 1998. Purification of ethyl docosahexaenoate by selective alcoholysis of fatty acid ethyl esters with immobilized Rhizomucor miehei lipase. J. Am. Oil. Chem. Soc. 75: 1565-1571. https://doi.org/10.1007/s11746-998-0095-7
  30. Coradin JH, Braun A, Viccini G, Jr LFdLL, Krieger N, Mitchell DA. 2011. A three-dimensional discrete latticebased system for modeling the growth of aerial hyphae of filamentous fungi on solid surfaces: A tool for investigating micro-scale phenomena in solid-state fermentation. Biochem. Eng. J. 54: 164-171. https://doi.org/10.1016/j.bej.2011.02.012
  31. Yoon LW, Ang TN, Ngoh GC, Chua ASM. 2014. Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass. Bioenerg. 67: 319-338. https://doi.org/10.1016/j.biombioe.2014.05.013
  32. Ibarruri J, Hernandez I. 2017. Rhizopus oryzae as Fermentation Agent in Food Derived Sub-products. Waste. Biomass. Valori. 9: 2107-2115.
  33. Boswell GP, Jacobs H, Davidson FA, Gadd GM, Ritz K. 2003. Growth and function of fungal mycelia in heterogeneous environments. B. Math Biol. 65: 447-477. https://doi.org/10.1016/S0092-8240(03)00003-X
  34. Singhania RR, Patel AK, Soccol CR, Pandey A. 2009. Recent advances in solid-state fermentation. Biochem. Eng. J. 44: 13-18. https://doi.org/10.1016/j.bej.2008.10.019
  35. Soccol CR, Costa ESFd, Letti LAJ, Karp SG, Woiciechowski AL, Vandenberghe LPdS. 2017. Recent developments and innovations in solid state fermentation. Biotech. Res. Innov. 1: 52-71. https://doi.org/10.1016/j.biori.2017.01.002
  36. Chisti Y. 2010. Fermentation Technology, pp. 149-171. Industrial Biotechnology, Ed. Wiley-VCH Verlag GmbH & Co. KGaA.
  37. Chisti Y. 1999. Solid Substrate Fermentations, Enzyme Production, Food Enrichment, pp.2446-2462. Encyclopedia of Bioprocess Technology, Ed. Wiley, New York.
  38. Chisti Y. 2010. Solid Substrate Fermentations, Enzyme Production, Food Enrichment, pp.4516-4534. Encyclopedia of Industrial Biotechnology, Ed. Wiley, New York.
  39. Kong W, Guo F, Zhou S, Cun Y, Tang X. 2012. Isolation of glucoamylase-producing rhizopus strains and study on their enzyme properties. Liquor-Making Sci. Technol. 219: 32-35.
  40. Diaz BHC, Aparicio AJ, Chanona-Perez JJ, Calderon- Dominguez G, Alamilla-Beltran L, Hernandez-Sanchez H, et al. 2010. Morphological characterization of the growing front of Rhizopus oligosporus in solid media. J. Food Eng. 101: 309-317. https://doi.org/10.1016/j.jfoodeng.2010.06.028
  41. Martinez-Ruiz A, Tovar-Castro L, Garcia HS, Saucedo-Castaneda G, Favela-Torres E. 2018. Continuous ethyl oleate synthesis by lipases produced by solid-state fermentation by Rhizopus microsporus. Bioresour. Technol. 265: 52-58. https://doi.org/10.1016/j.biortech.2018.05.080
  42. Pitol LO, Finkler ATJ, Dias GS, Machado AS, Zanin GM, Mitchell DA, et al. 2017. Optimization studies to develop a low-cost medium for production of the lipases of Rhizopus microsporus by solid-state fermentation and scale-up of the process to a pilot packed-bed bioreactor. Process Biochem. 62: 37-47. https://doi.org/10.1016/j.procbio.2017.07.019
  43. Escaramboni B, Fernandez Nunez EG, Carvalho AFA, de Oliva Neto P. 2018. Ethanol biosynthesis by fast hydrolysis of cassava bagasse using fungal amylases produced in optimized conditions. Ind. Crop. Prod. 112: 368-377. https://doi.org/10.1016/j.indcrop.2017.12.004
  44. Ramos-Sanchez LB, Cujilema-Quitio MC, Julian-Ricardo MC, Cordova J, Fickers P. 2015. Fungal lipase production by solid-state fermentation. J. Bioproc. Biotech. 5: 203-211.
  45. Diaz AB, Blandino A, Webb C, Caro I. 2016. Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues. Appl. Microbiol. Biot. 100: 1-12. https://doi.org/10.1007/s00253-015-7019-x
  46. Casciatori FP, Thomeo JC. 2018. Heat transfer in packedbeds of agricultural waste with low rates of air flow applicable to solid-state fermentation. Chem. Eng. Sci. 188: 97-111. https://doi.org/10.1016/j.ces.2018.05.024
  47. Hansen GH, Lubeck M, Frisvad JC, Lubeck PS, Andersen B. 2015. Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation. Process Biochem. 50: 1327-1341. https://doi.org/10.1016/j.procbio.2015.05.017
  48. Kosakai Y, Soo Park Y, Okabe M. 1997. Enhancement of L(+)-lactic acid production using mycelial flocs of Rhizopus oryzae. Biotechnol. Bioeng. 55: 461-470. https://doi.org/10.1002/(SICI)1097-0290(19970805)55:3<461::AID-BIT1>3.0.CO;2-A
  49. Varzakas T. 1998. Rhizopus oligosporus mycelial penetration and enzyme diffusion in soya bean tempe. Process Biochem. 33: 741-747. https://doi.org/10.1016/S0032-9592(98)00044-2
  50. Rodriguez de Olmos A, Bru E, Garro MS. 2015. Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation. Int. J. Food Microbiol. 196: 16-23. https://doi.org/10.1016/j.ijfoodmicro.2014.11.030

Cited by

  1. Analysis of Saccharification Products of High-Concentration Glutinous Rice Fermentation by Rhizopus nigricans Q3 and Alcoholic Fermentation of Saccharomyces cerevisiae GY-1 vol.6, pp.12, 2021, https://doi.org/10.1021/acsomega.0c05452