References
- Allen, R. G., M. Smith, A. Perrier, and L. S. Pereira, 1994. An update for the definition of reference evapotranspiration. ICID Bull 43(2): 1-92.
- Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, No 5 6 , FAO, Rome.
- Allen, R. G. and Food and Agriculture Organization of the United Nations (FAO), 1998. Crop evapotranspiration: guidelines for computing crop water requirements, 56-57, Food and Agricultural Organization of the United Nations, P. 300.
- American Society of Civil Engineers (ASCE), 2000. Standardization of Reference Evapotranspiration Task Committee, 2000.
- Antonopoulos, V. Z. and A. V. Antonopoulos, 2017. Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Comp. Electron. Agric. 132: 86-96. doi:10.1016/j.compag.2016.11.011
- Aytek, A., A. Guven, M. I. Yuce, and H. Aksoy, 2009. Reply to discussion of "an explicit neural network formulation for evapotranspiration". Hydrological Sciences Journal 54(2): 389-393. doi:10.1623/hysj.54.2.389.
- Azadeh, A., K. D. Shoushtari, M. Saberi, and E. Teimoury, 2013. An integrated artificial neural network and system dynamics approach in support of the viable system model to enhance industrial intelligence: the case of a large broiler industry. Systems Research and Behavior Science 31(2): 236-257. doi:10.1002/sres.2199.
- Basheer I. A. and M. Hajmeer, 2000. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43(1): 3-31. https://doi.org/10.1016/S0167-7012(00)00201-3
- Basu, J. K., D. Bhattacharyya, and T. H. Kim, 2010. Use of artificial neural network in pattern recognition. International Journal of Software Engineering and its Applications 4(2): 23-43.
- Dawson, C. W. and R. Wilby, 1998. An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal 43: 47-66. doi:10.1080/02626669809492102
- De Medeiros, F. J., C. M. e Silva, and B. G. Bezerra, 2017. Calibration of Angstrom-Prescott equation to estimate daily solar radiation on Rio Grande do Norte State, Brazil. Revista Brasileira de Meteorologia 32(3): 409-461. https://doi.org/10.1590/0102-77863230008
- Dogan, E., 2009. Reference evapotranspiration estimation using adaptive neuro-fuzzy inference systems. Irrigation And Drainage 58: 617-628. doi:10.1002/ird.445
- Igbadum H. E, H. F. Mahoo, A. Tarimo, and B. A. Salim, 2006. Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of Great Ruaha River Basin, Tanzania. Agricultural Water Management 85: 141-150. doi:10.1016/j.agwat.2006.04.003
- Food and Agriculture Organization of the United Nations (FAO), 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO irrigation and drainage paper 56. Rome, Italy.
- Kaastra, I. and M. Boyd, 1996. Designing a neural network for forecasting financial and economic time series. Neurocomputing 10(3): 215-236. https://doi.org/10.1016/0925-2312(95)00039-9
- Kahane, L. H., 2008. Regression Basics, 2nd Ed. SAGE Publications Inc., Los Angeles, U.S.A.
- Kecman, V., 2001. Learning and soft computing: Support vector machines, neural networks, and fuzzy logic model.
- Kim, M., J. McGhee, S. Lee, and J. Thurston, 2011. Comparative prediction schemes using conventional and advanced statistical analysis to predict microbial water quality in runoff form manured fields. Journal of Environmental Science and Health, Part A 46: 1392-1400.
- Kim, M., C. Y. Choi, and C. P. Gerba, 2008. Source tracking of microbial intrusion in water system using artificial neural networks. Water Research 42(4-5): 1308-1314. doi:10.1016/j.watres.2007.09.032
- Kisi, O., 2005. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal 50(4): 683-696. https://doi.org/10.1623/hysj.2005.50.4.683
- Koivo, H. N., 1994. Artificial neural networks in fault diagnosis and control. Control Engineering Practice 2(1): 89-101. https://doi.org/10.1016/0967-0661(94)90577-0
- Kumar, M., N. S. Raghuwanshi, R. Singh, W. W. Wallender, and W. O. Pruitt, 2002. Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering ASCE 128(4): 224-233. doi:10.1061/-ASCE!0733-9437-2002!128:4-224!
- Jain, S. K., A. Sarkar, and V. Garg, 2008. Impact of declining trend of flow on Harike Wetland, India. Water Resources Management 22(4): 409-421. https://doi.org/10.1007/s11269-007-9169-9
- Jun, W., X. Wang, M. Guo, and X. Xu, 2012, Impact of climate change on reference crop evapotranspiration in Chuxiong City, Yunnan Province. Procedia Earth and Planetary Science 5: 113-119. https://doi.org/10.1016/j.proeps.2012.01.019
- Landeras, G., A. Ortiz-Barredo, and J. J. Lopez, 2008. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agricultural Water Management 95(5): 553-565. https://doi.org/10.1016/j.agwat.2007.12.011
- Lang, D., J. Zheng, J. Shi, F. Liao, X. Ma, W. Wang, X. Chen, and M. Zhang, 2017. The comparative study of potential evapotranspiration estimation by eight methods with FAO Penman-Monteith method in Southwestern China. Water 9(734): 1-18.
- Liu, S. and Z. Xu, 2017. Micrometeorological methods to determine evapotranspiration. Observation and Measurement 1-39.
- Liu, X., X. J. Zhang, Q. Tang, and X. Z. Zhang, 2014. Effects of surface wind speed decline on modeled hydrological conditions in China. Hydrology and Earth System Sciences 18(8): 2803-2813. https://doi.org/10.5194/hess-18-2803-2014
- Maier, H. R. and G. C. Dandy, 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modeling & Software 15: 101-124. https://doi.org/10.1016/S1364-8152(99)00007-9
- Mia, M. M. A., S. K. Biswas, M. C. Urmi, and A. Siddique, 2015. An algorithm for training multilayer perceptron (MLP) for image reconstruction using neural network without overfitting. International Journal of Scientific & Technology Research 4(2): 271-275.
- Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, and R. D. Harmel, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50: 885-900. https://doi.org/10.13031/2013.23153
- Nash, J. E. and J. V. Sutcliffe, 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology 10(3): 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
- NeuralWare, 1993. NeuralWorks Professional II/Plus: Reference Guide, NeuralWare, Inc., Pittsburgh, PA, USA.
- Ortiz-Rodriguez, J., M. Martinez-Blanco, J. Cervantes-Viramontes, and H. Vega-Carrillo, 2013. Robust design of artificial neural networks methodology in neutron spectrometry, In: K. Suzuki, ed. Artificial Neural Networks - Architectures and Applications, s.l.: InTech, pp. 83-111.
- Rudd, K., G. Di Muro, and S. Ferrari, 2014. A constrained backpropagation approach for the adoptive solution of partial differential equations. IEEE Transactions on Neural Networks and Learning Systems 25(3): 571-584. https://doi.org/10.1109/TNNLS.2013.2277601
- Sahoo, G. B. and C. Ray, 2006. Flow forecasting for a Hawaii stream using rating curves and neural networks. Journal of Hydrology 317(1): 63-80. https://doi.org/10.1016/j.jhydrol.2005.05.008
- Singh, V. P., 1988. Hydrology system rainfall-runoff modeling, vol. 1. Prentice Hall, Englewood Cliffs, New Jersey, USA.
- Specht, D. F., 1991. A general regression neural network. IEEE Transactions on Neural Networks 2(6): 568-576. https://doi.org/10.1109/72.97934
- Traore, S., Y. M. Wang, and T. Kerh, 2008. Modeling reference evapotranspiration by generalized regression neural network in semiarid zone of Africa. WSEAS Transactions on Information Science and Applications 5(6): 991-1000.
- Xu, C. Y. and V. P. Singh, 2000. Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrological Processes 14: 339-349. https://doi.org/10.1002/(SICI)1099-1085(20000215)14:2<339::AID-HYP928>3.0.CO;2-O