DOI QR코드

DOI QR Code

기준 일증발산량 산정을 위한 인공신경망 모델과 경험모델의 적용 및 비교

Comparison of Artificial Neural Network and Empirical Models to Determine Daily Reference Evapotranspiration

  • Choi, Yonghun (Department of Agricultural Engineering, National Institute of Agricultural Sciences(NAS), Rural Development Administration(RDA)) ;
  • Kim, Minyoung (Department of Agricultural Engineering, National Institute of Agricultural Sciences(NAS), Rural Development Administration(RDA)) ;
  • O'Shaughnessy, Susan (Conservation and Production Research Laboratory, USDA Agricultural Research Service (USDA-ARS)) ;
  • Jeon, Jonggil (Department of Agricultural Engineering, National Institute of Agricultural Sciences(NAS), Rural Development Administration(RDA)) ;
  • Kim, Youngjin (Department of Agricultural Engineering, National Institute of Agricultural Sciences(NAS), Rural Development Administration(RDA)) ;
  • Song, Weon Jung (Sangju Agricultural Technology Center)
  • 투고 : 2018.07.17
  • 심사 : 2018.09.27
  • 발행 : 2018.11.30

초록

The accurate estimation of reference crop evapotranspiration ($ET_o$) is essential in irrigation water management to assess the time-dependent status of crop water use and irrigation scheduling. The importance of $ET_o$ has resulted in many direct and indirect methods to approximate its value and include pan evaporation, meteorological-based estimations, lysimetry, soil moisture depletion, and soil water balance equations. Artificial neural networks (ANNs) have been intensively implemented for process-based hydrologic modeling due to their superior performance using nonlinear modeling, pattern recognition, and classification. This study adapted two well-known ANN algorithms, Backpropagation neural network (BPNN) and Generalized regression neural network (GRNN), to evaluate their capability to accurately predict $ET_o$ using daily meteorological data. All data were obtained from two automated weather stations (Chupungryeong and Jangsu) located in the Yeongdong-gun (2002-2017) and Jangsu-gun (1988-2017), respectively. Daily $ET_o$ was calculated using the Penman-Monteith equation as the benchmark method. These calculated values of $ET_o$ and corresponding meteorological data were separated into training, validation and test datasets. The performance of each ANN algorithm was evaluated against $ET_o$ calculated from the benchmark method and multiple linear regression (MLR) model. The overall results showed that the BPNN algorithm performed best followed by the MLR and GRNN in a statistical sense and this could contribute to provide valuable information to farmers, water managers and policy makers for effective agricultural water governance.

키워드

참고문헌

  1. Allen, R. G., M. Smith, A. Perrier, and L. S. Pereira, 1994. An update for the definition of reference evapotranspiration. ICID Bull 43(2): 1-92.
  2. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration - Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, No 5 6 , FAO, Rome.
  3. Allen, R. G. and Food and Agriculture Organization of the United Nations (FAO), 1998. Crop evapotranspiration: guidelines for computing crop water requirements, 56-57, Food and Agricultural Organization of the United Nations, P. 300.
  4. American Society of Civil Engineers (ASCE), 2000. Standardization of Reference Evapotranspiration Task Committee, 2000.
  5. Antonopoulos, V. Z. and A. V. Antonopoulos, 2017. Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Comp. Electron. Agric. 132: 86-96. doi:10.1016/j.compag.2016.11.011
  6. Aytek, A., A. Guven, M. I. Yuce, and H. Aksoy, 2009. Reply to discussion of "an explicit neural network formulation for evapotranspiration". Hydrological Sciences Journal 54(2): 389-393. doi:10.1623/hysj.54.2.389.
  7. Azadeh, A., K. D. Shoushtari, M. Saberi, and E. Teimoury, 2013. An integrated artificial neural network and system dynamics approach in support of the viable system model to enhance industrial intelligence: the case of a large broiler industry. Systems Research and Behavior Science 31(2): 236-257. doi:10.1002/sres.2199.
  8. Basheer I. A. and M. Hajmeer, 2000. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43(1): 3-31. https://doi.org/10.1016/S0167-7012(00)00201-3
  9. Basu, J. K., D. Bhattacharyya, and T. H. Kim, 2010. Use of artificial neural network in pattern recognition. International Journal of Software Engineering and its Applications 4(2): 23-43.
  10. Dawson, C. W. and R. Wilby, 1998. An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal 43: 47-66. doi:10.1080/02626669809492102
  11. De Medeiros, F. J., C. M. e Silva, and B. G. Bezerra, 2017. Calibration of Angstrom-Prescott equation to estimate daily solar radiation on Rio Grande do Norte State, Brazil. Revista Brasileira de Meteorologia 32(3): 409-461. https://doi.org/10.1590/0102-77863230008
  12. Dogan, E., 2009. Reference evapotranspiration estimation using adaptive neuro-fuzzy inference systems. Irrigation And Drainage 58: 617-628. doi:10.1002/ird.445
  13. Igbadum H. E, H. F. Mahoo, A. Tarimo, and B. A. Salim, 2006. Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of Great Ruaha River Basin, Tanzania. Agricultural Water Management 85: 141-150. doi:10.1016/j.agwat.2006.04.003
  14. Food and Agriculture Organization of the United Nations (FAO), 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO irrigation and drainage paper 56. Rome, Italy.
  15. Kaastra, I. and M. Boyd, 1996. Designing a neural network for forecasting financial and economic time series. Neurocomputing 10(3): 215-236. https://doi.org/10.1016/0925-2312(95)00039-9
  16. Kahane, L. H., 2008. Regression Basics, 2nd Ed. SAGE Publications Inc., Los Angeles, U.S.A.
  17. Kecman, V., 2001. Learning and soft computing: Support vector machines, neural networks, and fuzzy logic model.
  18. Kim, M., J. McGhee, S. Lee, and J. Thurston, 2011. Comparative prediction schemes using conventional and advanced statistical analysis to predict microbial water quality in runoff form manured fields. Journal of Environmental Science and Health, Part A 46: 1392-1400.
  19. Kim, M., C. Y. Choi, and C. P. Gerba, 2008. Source tracking of microbial intrusion in water system using artificial neural networks. Water Research 42(4-5): 1308-1314. doi:10.1016/j.watres.2007.09.032
  20. Kisi, O., 2005. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal 50(4): 683-696. https://doi.org/10.1623/hysj.2005.50.4.683
  21. Koivo, H. N., 1994. Artificial neural networks in fault diagnosis and control. Control Engineering Practice 2(1): 89-101. https://doi.org/10.1016/0967-0661(94)90577-0
  22. Kumar, M., N. S. Raghuwanshi, R. Singh, W. W. Wallender, and W. O. Pruitt, 2002. Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering ASCE 128(4): 224-233. doi:10.1061/-ASCE!0733-9437-2002!128:4-224!
  23. Jain, S. K., A. Sarkar, and V. Garg, 2008. Impact of declining trend of flow on Harike Wetland, India. Water Resources Management 22(4): 409-421. https://doi.org/10.1007/s11269-007-9169-9
  24. Jun, W., X. Wang, M. Guo, and X. Xu, 2012, Impact of climate change on reference crop evapotranspiration in Chuxiong City, Yunnan Province. Procedia Earth and Planetary Science 5: 113-119. https://doi.org/10.1016/j.proeps.2012.01.019
  25. Landeras, G., A. Ortiz-Barredo, and J. J. Lopez, 2008. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agricultural Water Management 95(5): 553-565. https://doi.org/10.1016/j.agwat.2007.12.011
  26. Lang, D., J. Zheng, J. Shi, F. Liao, X. Ma, W. Wang, X. Chen, and M. Zhang, 2017. The comparative study of potential evapotranspiration estimation by eight methods with FAO Penman-Monteith method in Southwestern China. Water 9(734): 1-18.
  27. Liu, S. and Z. Xu, 2017. Micrometeorological methods to determine evapotranspiration. Observation and Measurement 1-39.
  28. Liu, X., X. J. Zhang, Q. Tang, and X. Z. Zhang, 2014. Effects of surface wind speed decline on modeled hydrological conditions in China. Hydrology and Earth System Sciences 18(8): 2803-2813. https://doi.org/10.5194/hess-18-2803-2014
  29. Maier, H. R. and G. C. Dandy, 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modeling & Software 15: 101-124. https://doi.org/10.1016/S1364-8152(99)00007-9
  30. Mia, M. M. A., S. K. Biswas, M. C. Urmi, and A. Siddique, 2015. An algorithm for training multilayer perceptron (MLP) for image reconstruction using neural network without overfitting. International Journal of Scientific & Technology Research 4(2): 271-275.
  31. Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, and R. D. Harmel, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50: 885-900. https://doi.org/10.13031/2013.23153
  32. Nash, J. E. and J. V. Sutcliffe, 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology 10(3): 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  33. NeuralWare, 1993. NeuralWorks Professional II/Plus: Reference Guide, NeuralWare, Inc., Pittsburgh, PA, USA.
  34. Ortiz-Rodriguez, J., M. Martinez-Blanco, J. Cervantes-Viramontes, and H. Vega-Carrillo, 2013. Robust design of artificial neural networks methodology in neutron spectrometry, In: K. Suzuki, ed. Artificial Neural Networks - Architectures and Applications, s.l.: InTech, pp. 83-111.
  35. Rudd, K., G. Di Muro, and S. Ferrari, 2014. A constrained backpropagation approach for the adoptive solution of partial differential equations. IEEE Transactions on Neural Networks and Learning Systems 25(3): 571-584. https://doi.org/10.1109/TNNLS.2013.2277601
  36. Sahoo, G. B. and C. Ray, 2006. Flow forecasting for a Hawaii stream using rating curves and neural networks. Journal of Hydrology 317(1): 63-80. https://doi.org/10.1016/j.jhydrol.2005.05.008
  37. Singh, V. P., 1988. Hydrology system rainfall-runoff modeling, vol. 1. Prentice Hall, Englewood Cliffs, New Jersey, USA.
  38. Specht, D. F., 1991. A general regression neural network. IEEE Transactions on Neural Networks 2(6): 568-576. https://doi.org/10.1109/72.97934
  39. Traore, S., Y. M. Wang, and T. Kerh, 2008. Modeling reference evapotranspiration by generalized regression neural network in semiarid zone of Africa. WSEAS Transactions on Information Science and Applications 5(6): 991-1000.
  40. Xu, C. Y. and V. P. Singh, 2000. Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrological Processes 14: 339-349. https://doi.org/10.1002/(SICI)1099-1085(20000215)14:2<339::AID-HYP928>3.0.CO;2-O