DOI QR코드

DOI QR Code

Preparation and characterization of Mn doped copper nitride films with high photocurrent response

  • Yu, Aiai (Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT)) ;
  • Hu, Ruiyuan (Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT)) ;
  • Liu, Wei (Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT)) ;
  • Zhang, Rui (Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT)) ;
  • Zhang, Jian (Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT)) ;
  • Pu, Yong (School of Science, Nanjing University of Posts and Telecommunications (NUPT)) ;
  • Chu, Liang (School of Science, Nanjing University of Posts and Telecommunications (NUPT)) ;
  • Yang, Jianping (School of Science, Nanjing University of Posts and Telecommunications (NUPT)) ;
  • Li, Xing'ao (Key Laboratory for Organic Electronics & Information Displays (KLOEID), Synergetic Innovation Center for Organic Electronics and Information Displays (SICOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT))
  • 투고 : 2018.05.10
  • 심사 : 2018.07.12
  • 발행 : 2018.11.30

초록

The Mn-doped copper nitride ($Cu_3N$) films with Mn concentration of 2.0 at. % have high crystallinity and uniform surface morphology. We found that the as-synthesized Mn-doped $Cu_3N$ films show suitable optical absorption in the visible region and the band gap is ~1.48 eV. A simple photodetector based on Mn doped $Cu_3N$ films was firstly fabricated via magnetron sputtering method. The fabricated device with doping of Mn demonstrated high photocurrent response and fast response shorter than 0.1 s both for rise and decay time superior to the pure $Cu_3N$. Furthermore, the energy levels of Mn-doped Cu3N matched well with ITO and Ag electrode. The excellent photoelectric properties reflect a good balance between sensitivities and response rate. Our investigation reveals the excellent potential of Mn-doped $Cu_3N$ films for application of photodetectors.

키워드

과제정보

연구 과제 주관 기관 : Natural Science Foundation of Jiangsu Province, NUPTSF, National Natural Science Foundation of China

참고문헌

  1. H. Wu, W. Chen, Size-controlled synthesis and application as cathode catalyst in alkaline fuel cells, J. Am. Chem. Soc. 133 (2011) 15236-15239. https://doi.org/10.1021/ja204748u
  2. N. Lu, A. Ji, Z. Cao, Nearly constant electrical resistance over large temperature range in $Cu_3NMx$ (M= Cu, Ag, Au) compounds, Sci. Rep. 3 (2013) 3090. https://doi.org/10.1038/srep03090
  3. P.X. Xi, Z.H. Xu, D.Q. Gao, F.J. Chen, D.S. Xue, C.L. Tao, Z.N. Chen, Solvothermal synthesis of magnetic copper nitride nanocubes with highly electrocatalytic reduction properties, RSC Adv. 4 (2014) 14206-14209.
  4. J. Xiao, M. Qi, Y. Cheng, A.H. Jiang, Y.P. Zeng, J.F. Ma, Influences of nitrogen partial pressure on the optical properties of copper nitride films, RSC Adv. 6 (2016) 40895-40899. https://doi.org/10.1039/C6RA03479A
  5. S. Ghosh, F. Singh, D. Choudhary, D.K. Avasthi, V. Ganesan, Effect of substrate temperature on the physical properties of copper nitride films by rf reactive sputtering, Surf. Coating. Technol. 142 (2001) 1034-1039.
  6. C.M. Caskey, R.M. Richards, D.S. Ginley, A. Zakutayev, Thin film synthesis and properties of copper nitride, a metastable semiconductor, Mater. Horiz. 1 (2014) 424-430. https://doi.org/10.1039/C4MH00049H
  7. C. Navio, J. Alvarez, M.J. Capitan, J. Camarero, R. Miranda, Thermal stability of Cu and Fe nitrides and their applications for writing locally spin valves, Appl. Phys. Lett. 94 (2009) 263112. https://doi.org/10.1063/1.3159630
  8. U. Hahn, W. Weber, Electronic structure and chemical-bonding mechanism of $Cu_3N$, $Cui_3NPd$, and related Cu (I) compounds, Phys. Rev. B 53 (1996) 12684. https://doi.org/10.1103/PhysRevB.53.12684
  9. T. Maruyama, T. Morishita, Copper nitride and tin nitride thin films for write-once optical recording media, Appl. Phys. Lett. 69 (1996) 890-891. https://doi.org/10.1063/1.117978
  10. A. Zakutayev, C.M. Caskey, A.N. Fioretti, D.S. Ginley, J. Vidal, V. Stevanovic, E. Tea, S. Lany, Defect tolerant semiconductors for solar energy conversion, J. Phys. Chem. Lett. 5 (2014) 1117-1125. https://doi.org/10.1021/jz5001787
  11. A. Zakutayev, Design of nitride semiconductors for solar energy conversion, J. Mater. Chem. A 4 (2016) 6742-6754. https://doi.org/10.1039/C5TA09446A
  12. A.L. Ji, N.P. Lu, L. Gao, W.B. Zhang, L.G. Liao, Electrical properties and thermal stability of Pd-doped copper nitride films, J. Appl. Phys. 113 (2013) 043705. https://doi.org/10.1063/1.4788905
  13. X.Y. Fan, Z.J. Li, A.L. Meng, C. Li, Z.G. Wu, P.X. Yan, Study on the structure, morphology and properties of Fe-doped $Cu_3N$ films, J. Phys. D Appl. Phys. 47 (2014) 185304. https://doi.org/10.1088/0022-3727/47/18/185304
  14. Y.H. Zhao, J.Y. Zhao, T. Yang, J. Zhang, J.P. Yang, X.A. Li, Enhanced write-once optical storage capacity of $Cu_3N$ film by coupling with an $Al_2O_3$ protective layer, Ceram. Int. 42 (2016) 4486-4490. https://doi.org/10.1016/j.ceramint.2015.11.136
  15. W. Zhu, X. Zhang, X.N. Fu, Y.N. Zhou, S.Y. Luo, X.J. Wu, Resistive-switching behavior and mechanism in copper-nitride thin films prepared by DC magnetron sputtering, Phys. Status Solidi A 209 (2012) 1996-2001. https://doi.org/10.1002/pssa.201228175
  16. J.R. Wang, F. Li, X.B. Liu, H.C. Zhou, X.F. Shao, Y.Y. Qu, M.W. Zhao, $Cu_3N$ and its analogs: a new class of electrodes for lithium ion batteries, J. Mater. Chem. A 5 (2017) 8762-8768. https://doi.org/10.1039/C7TA02339A
  17. H.Y. Chen, X.A. Li, J.Y. Zhao, Z.L. Wu, T. Yang, Y.W. Ma, W. Huang, First principles study on the influence of electronic configuration of M on $Cu_3NM$: M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Comput. Theor. Chem. 1027 (2014) 33-38. https://doi.org/10.1016/j.comptc.2013.10.017
  18. J. Yao, J. Shao, Y. Wang, Z. Zhao, G. Yang, Ultra-broadband and high response of the $Bi_2Te_3-Si$ heterojunction and its application as a photodetector at room temperature in harsh working environments, Nanoscale 7 (2015) 12535-12541. https://doi.org/10.1039/C5NR02953H
  19. K.T. Lin, H.L. Chen, Y.S. Lai, C.C. Yu, Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths, Nat. Commun. 5 (2014) 4288. https://doi.org/10.1038/ncomms5288
  20. F. Xia, T. Mueller, Y.M. Lin, A.V. Garcia, P. Avouris, Ultrafast graphene photodetector, Nat. Nanotechnol. 4 (2009) 839-843. https://doi.org/10.1038/nnano.2009.292
  21. T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications, Nat. Photon. 4 (2010) 297-301. https://doi.org/10.1038/nphoton.2010.40
  22. N.M. Gabor, J.C. Song, Q. Ma, N.L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L.S. Levitov, P. Jarillo-Herrero, Hot Carrier-assisted intrinsic photoresponse in graphene, Science 334 (2011) 648-652. https://doi.org/10.1126/science.1211384
  23. J.H. Luo, H.Y. Wei, Q.L. Huang, X. Hu, H.F. Zhao, R. Yu, D.M. Li, Y.H. Luo, Q.B. Meng, Highly efficient core-shell $CuInS_2-Mn$ doped CdS quantum dot sensitized solar cells, Chem. Commun. 49 (2013) 3881-3883. https://doi.org/10.1039/c3cc40715b
  24. J.J. Tian, L.L. Lv, C.B. Fei, Y.J. Wang, X.G. Liu, G.Z. Cao, A highly efficient (> 6%) $Cd_{1−x}Mn_xSe$ quantum dot sensitized solar cell, J. Mater. Chem. A 2 (2014) 19653-19659. https://doi.org/10.1039/C4TA04534C
  25. J. Wang, Y. Li, Q. Shen, T. Izuishi, Z.X. Pan, K. Zhao, X.H. Zhong, Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%, J. Mater. Chem. A 4 (2016) 877-886. https://doi.org/10.1039/C5TA09306F
  26. R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Optical properties of manganese- doped nanocrystals of ZnS, Phys. Rev. Lett. 72 (1994) 416. https://doi.org/10.1103/PhysRevLett.72.416
  27. R. Beaulac, P.I. Archer, S.T. Ochsenbein, D.R. Gamelin, $Mn^{2+}$-Doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics, Adv. Funct. Mater. 18 (2008) 3873-3891. https://doi.org/10.1002/adfm.200801016
  28. D.J. Norris, A.L. Efros, S.C. Erwin, Doped nanocrystals, Science 319 (2008) 1776-1779. https://doi.org/10.1126/science.1143802
  29. Y.T. Dong, J. Choi, H.K. Jeong, D.H. Son, Hot electrons generated from doped quantum dots via up conversion of excitons to hot charge carriers for enhanced photocatalysis, J. Am. Chem. Soc. 137 (2015) 5549-5554. https://doi.org/10.1021/jacs.5b02026
  30. P.K. Santra, Y.S. Chen, Role of $Mn^{2+}$ in doped quantum dot solar cell, Electrochim. Acta 146 (2014) 654-658. https://doi.org/10.1016/j.electacta.2014.08.145
  31. Q. L. Dai, E. M. Sabio, W. Y. Wang and J. K. Tang, Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance, Appl. Phys. Lett. 104 (2104) 183901. https://doi.org/10.1063/1.4875107
  32. S. Horoz, Q. Dai, F.S. Maloney, B. Yakami, J.M. Pikal, X. Zhang, J. Wang, W. Wang, J. Tang, Absorption induced by Mn doping of ZnS for improved sensitized quantumdot solar cells, Phys. Rev. Appl. 3 (2015) 024011. https://doi.org/10.1103/PhysRevApplied.3.024011
  33. T. Maruyama, T. Morishita, Copper nitride thin films prepared by radio-frequency reactive sputtering, J. Appl. Phys. 78 (1995) 4104-4107. https://doi.org/10.1063/1.359868
  34. T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, Y. Nakayama, Copper nitride thin films prepared by reactive radio-frequency magnetron sputtering, Thin Solid Films 348 (1999) 8-13. https://doi.org/10.1016/S0040-6090(98)01776-3
  35. X.Y. Fan, Z.J. Li, A.L. Meng, Study on the structure, morphology and properties of Fe-doped $Cu_3N$ films, J. Phys. D Appl. Phys. 47 (2014) 185304. https://doi.org/10.1088/0022-3727/47/18/185304
  36. X. Fan, Z. Li, A. Meng, C. Li, Z. Wu, P. Yan, Improving the thermal stability of $Cu_3N$ films by addition of Mn, J. Mater. Sci. Technol. 31 (2015) 822-827. https://doi.org/10.1016/j.jmst.2015.07.013
  37. Z. Yin, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, Singlelayer $MoS_2$ phototransistors, ACS Nano 6 (2012) 74-80. https://doi.org/10.1021/nn2024557
  38. N. Perea-Lopez, A.L. Elias, A. Berkdemir, A. Castro-Beltran, H.R. Gutierrez, S. Feng, R. Lv, T. Hayashi, F. Lopez-Urias, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, M. Terrones, Photosensor device based on few-layered $WS_2$ films, Adv. Funct. Mater. 23 (2013) 5511-5517. https://doi.org/10.1002/adfm.201300760
  39. P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan, K. Xiao, Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates, Nano Lett. 13 (2013) 1649-1654. https://doi.org/10.1021/nl400107k
  40. G. Su, V.G. Hadjiev, P.E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, M. Ajayan P, J. Lou, H. Peng, Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application, Nano Lett. 15 (2014) 506-513.
  41. H.W. Lei, G. Yang, X.L. Zheng, Z.G. Zhang, C. Chen, P.L. Qin, Y.F. Li, G.J. Fang, Incorporation of high-mobility and room-temperature-deposited $Cu_xS$ as a hole transport layer for efficient and stable organo-lead halide perovskite solar cells, Sol. RRL 1 (2017) 1700038. https://doi.org/10.1002/solr.201700038

피인용 문헌

  1. Simultaneously Enhanced Efficiency and Stability of Perovskite Solar Cells with TiO2 @CdS Core-Shell Nanorods Electron Transport Layer vol.6, pp.5, 2018, https://doi.org/10.1002/admi.201801976
  2. Observation of the Direct Energy Band Gaps of Defect-Tolerant Cu3N by Ultrafast Pump-Probe Spectroscopy vol.124, pp.6, 2018, https://doi.org/10.1021/acs.jpcc.9b10303
  3. Preparation of Copper Nitride Films with Superior Photocatalytic Activity through Magnetron Sputtering vol.13, pp.19, 2020, https://doi.org/10.3390/ma13194325
  4. Novel photoelectric material of perovskite-like (CH3)3SPbI3 nanorod arrays with high stability vol.59, pp.None, 2018, https://doi.org/10.1016/j.jechem.2020.12.003
  5. Fast-Response Metal-Semiconductor-Metal Junction Ultraviolet Photodetector Based on ZnS:Mn Nanorod Networks via a Cost-Effective Method vol.6, pp.48, 2018, https://doi.org/10.1021/acsomega.1c04981
  6. High power impulse magnetron sputtering growth processes for copper nitride thin film and its highly enhanced UV - visible photodetection properties vol.896, pp.None, 2022, https://doi.org/10.1016/j.jallcom.2021.162924