References
-
Abdulkareem AS, Kariim I, Bankole MT, Tijani JO, Abodunrin TF, Olu SC. Synthesis and characterization of tri-metallic Fe-Co-Ni catalyst supported on
$CaCO_3$ for multi-walled carbon nanotubes growth via chemical vapor deposition technique. Arabian J Sci Eng, 42, 4365 (2017). https://doi.org/10.1007/s13369-017-2478-2. - Bellucci S, Onorato P. Transport Properties in Carbon Nanotubes. In: Bellucci S, ed. Physical Properties of Ceramic and Carbon Nanoscale Structures. Lecture Notes in Nanoscale Science and Technology, Springer, Berlin, 45 (2011). https://doi.org/10.1007/978-3-642-15778-3_2.
- Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R. Methods for carbon nanotubes synthesis: review. J Mater Chem, 21, 15872 (2011). https://doi.org/10.1039/c1jm12254a.
- Mohammed IA, Bankole MT, Abdulkareem AS, Ochigbo SS, Afolabi AS, Abubakre OK. Full factorial design approach to carbon nanotubes synthesis by CVD method in argon environment. S Afr J Chem Eng, 24, 17 (2017). https://doi.org/10.1016/j.sajce.2017.06.001.
- Mhlanga SD, Coville NJ. Iron-cobalt catalysts synthesized by a reverse micelle impregnation method for controlled growth of carbon nanotubes. Diamond Relat Mater, 17, 1489 (2008). https://doi.org/10.1016/j.diamond.2008.01.049.
- Liu C, Cheng HM. Carbon nanotubes: controlled growth and application. Mater Today, 16, 19 (2013). https://doi.org/10.1016/j.mattod.2013.01.019.
- Allaedini G, Tasirin SM, Aminayi P, Yaakob Z, Talib MZM. Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over tri-metallic Ni-Co-Fe catalyst. React Kinet Mech Catal, 116, 385 (2015). https://doi.org/10.1007/s11144-015-0897-1.
- Duan X, Wang D, Qian G, Walmsley JC, Holmen A, Chen D, Zhou X. Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer-Tropsch synthesis of lower olefins. J Energy Chem, 25, 311 (2016). https://doi.org/10.1016/j.jechem.2016.01.003.
- Abdalla S, Al-Marzouki F, Al-Ghamdi AA, Abdel-Daiem, A. different technical applications of carbon nanotubes. Nanoscale Res Lett, 10, 358 (2015). https://doi.org/10.1186/s11671-015-1056-3.
- Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV. Carbon nanotubes: sensor properties. A review. Mod Electron Mater, 2, 95 (2016). https://doi.org/10.1016/j.moem.2017.02.002.
- Issi JP, Langer L, Heremans J, Olk CH. Electronic properties of carbon nanotubes: experimental results. Carbon, 33, 941 (1995). https://doi.org/10.1016/0008-6223(95)00023-7.
- Herranen O. Experimental Characterization of Electronic, Structural and Optical Properties of Individual Carbon Nanotubes, University of Jyvaskyla, Jyvaskyla, Finland, PhD Thesis (2014).
- Kharlamova MV, Volykhov AA, Yashina LV, Egorov AV, Lukashin AV. Experimental and theoretical studies on the electronic properties of praseodymium chloride-filled single-walled carbon nanotubes. J Mater Sci, 50, 5419 (2015). https://doi.org/10.1007/s10853-015-9086-x.
- Barone V, Scuseria GE. Theoretical study of the electronic properties of narrow single-walled carbon nanotubes: beyond the local density approximation. J Chem Phys, 121, 10376 (2004). https://doi.org/10.1063/1.1810132.
- Zhao J, Park H, Han J, Lu JP. Electronic properties of carbon nanotubes with covalent sidewall functionalization. J Phys Chem B, 108, 4227 (2004). https://doi.org/10.1021/jp036814u.
-
Qiao W, Bai H, Zhu Y, Huang Y. Structure and electronic properties of the double-wall nanotubes constructed from
$SiO_2$ nanotubes encapsulated inside zigzag carbon nanotubes. J Phys Condens Matter, 24, 185302 (2012). https://doi.org/10.1088/0953-8984/24/18/185302. - Boutahir M, Rahmani AH, Fakrach B, Chadli H, Rahmani A. Theoretical study of electronic and vibrational properties of dimer of single-wall carbon nanotubes. Int J Hydrogen Energy, 41, 20874 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.125.
- Yang N, Yang D, Chen L, Liu D, Cai M, Fan X. A first-principle theoretical study of mechanical and electronic properties in graphene single-walled carbon nanotube junctions. Materials, 10, 1300 (2017). https://doi.org/10.3390/ma10111300.
- Saito R, Dresselhaus G, Dresselhaus MS. Trigonal warping effect of carbon nanotubes. Phys Rev B, 61, 2981 (2000). https://doi.org/10.1103/physrevb.61.2981.
- Poncharal P, Berger C, Yi Y, Wang ZL, de Heer WA. Room temperature ballistic conduction in carbon nanotubes. J Phys Chem B, 106, 12104 (2002). https://doi.org/10.1021/jp021271u.
- Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ. Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett, 95, 086601 (2005). https://doi.org/10.1103/physrevlett.95.086601.
- Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y. Optical properties of single-wall carbon nanotubes. Synth Met, 103, 2555 (1999). https://doi.org/10.1016/s0379-6779(98)00278-1.