DOI QR코드

DOI QR Code

Improved flame retardant performance of cellulose fibers following fluorine gas treatment

  • Kim, Jong Gu (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • In, Se Jin (Department of Fire and Disaster Protection Engineering, Woosong University)
  • Received : 2018.04.23
  • Accepted : 2018.05.05
  • Published : 2018.10.31

Abstract

To improve the flame retardant performance of cellulose fibers, fluorine functional groups were introduced under various controlled fluorination conditions. The properties of the fluorinated cellulose fibers were analyzed by X-ray photoelectron spectroscopy and a thermogravimetric analysis. The fluorine functional group content in the fluorinated cellulose fibers increased with an increase in the fluorination temperature. However, the fluorination reaction increased the char yield and decreased the rate of degradation of the cellulose fibers by introducing donors, enabling the formation of a thick and compact char layer. Therefore, the flame retardant properties of cellulose fibers were improved following the fluorination treatment.

Keywords

References

  1. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed, 44, 3358 (2005). https://doi.org/10.1002/anie.200460587.
  2. Chun SJ, Lee SY, Doh GH, Lee S, Kim JH. Preparation of ultrastrength nanopapers using cellulose nanofibrils. J Ind Eng Chem, 17, 521 (2011). https://doi.org/10.1016/j.jiec.2010.10.022.
  3. Kuzmenko V, Naboka O, Gatenholm P, Enoksson P. Ammonium chloride promoted synthesis of carbon nanofibers from electrospun cellulose acetate. Carbon, 67, 694 (2014). https://doi.org/10.1016/j.carbon.2013.10.061.
  4. Loubinoux D, Chaunis S. An experimental approach to spinning new cellulose fibers with N-methylmorpholine-oxide as a solvent. Tex Res J, 57, 61 (1987). https://doi.org/10.1177/004051758705700201.
  5. Qi X, Guo H, Li L, Smith RL Jr. Acid-catalyzed dehydration of fructose into 5-hydroxymethylfurfural by cellulose-derived amorphous carbon. ChemSusChem, 5, 2215 (2012). https://doi.org/10.1002/cssc.201200363.
  6. Sekiguchi Y, Shafizadeh F. The effect of inorganic additives on the formation, composition, and combustion of cellulosic char. J Appl Polym Sci, 29, 1267 (1984). https://doi.org/10.1002/app.1984.070290421.
  7. Tang MM, Bacon R. Carbonization of cellulose fibers-I. Low temperature pyrolysis. Carbon, 2, 221 (1964). https://doi.org/10.1016/0008-6223(64)90035-1.
  8. Wu QL, Gu SY, Gong JH, Pan D. SEM/STM studies on the surface structure of a novel carbon fiber from lyocell. Synth Met, 156, 792 (2006). https://doi.org/10.1016/j.synthmet.2006.04.007.
  9. Kandola BK, Horrocks AR. Complex char formation in flame-retarded fibre-intumescent combinations-II. Thermal analytical studies. Polym Degrad Stab, 54, 289 (1996). https://doi.org/10.1016/s0141-3910(96)00054-7.
  10. Kandola BK, Horrocks AR, Price D, Coleman GV. Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci Part C Polym Rev, 36, 721 (1996). https://doi.org/10.1080/15321799608014859.
  11. Jung MJ, Jeong E, Kim S, Lee SI, Yoo JS, Lee YS. Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors. J Fluorine Chem, 132, 1127 (2011). https://doi.org/10.1016/j.jfluchem.2011.06.046.
  12. Jeong E, Lee BH, Doh SJ, Park IJ, Lee YS. Multifunctional surface modification of an aramid fabric via direct fluorination. J Fluorine Chem, 141, 69 (2012). https://doi.org/10.1016/j.jfluchem.2012.06.010.
  13. Okazoe T. Development of the "PERFECT" direct fluorination method and its industrial applications. J Fluorine Chem, 174, 120 (2015). https://doi.org/10.1016/j.jfluchem.2014.09.020.
  14. Im JS, Kang SC, Bai BC, Bae TS, In SJ, Jeong E, Lee SH, Lee YS. Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor. Carbon, 49, 2235 (2011). https://doi.org/10.1016/j.carbon.2011.01.054.
  15. Crassous I, Groult H, Lantelme F, Devilliers D, Tressaud A, Labrugère C, Dubois M, Belhomme C, Colisson A, Morel B. Study of the fluorination of carbon anode in molten KF-2HF by XPS and NMR investigations. J Fluorine Chem, 130, 1080 (2009). https://doi.org/10.1016/j.jfluchem.2009.07.022.
  16. Lee JM, Kim SJ, Kim JW, Kang PH, Nho YC, Lee YS. A high resolution XPS study of sidewall functionalized MWCNTs by fluorination. J Ind Eng Chem, 15, 66 (2009). https://doi.org/10.1016/j.jiec.2008.08.010.
  17. Peyroux J, Dubois M, Tomasella E, Petit E, Flahaut D. Enhancement of surface properties on commercial polymer packaging films using various surface treatment processes (fluorination and plasma). Appl Surf Sci, 315, 426 (2014). https://doi.org/10.1016/j.apsusc.2014.05.163.
  18. Park MS, Kim KH, Lee YS. Fluorination of single-walled carbon nanotube: the effects of fluorine on structural and electrical properties. J Ind Eng Chem, 37, 22 (2016). https://doi.org/10.1016/j.jiec.2016.03.024.
  19. Heinz H, Koerner H, Anderson KL, Vaia RA, Farmer BL. Force field for mica-Type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chem Mater, 17, 5658 (2005). https://doi.org/10.1021/cm0509328.
  20. Gronli MG, Varhegyi G, Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res, 41, 4201 (2002). https://doi.org/10.1021/ie0201157.
  21. Nam S, Condon BD, Parikh DV, Zhao Q, Cintron MS, Madison C. Effect of urea additive on the thermal decomposition of greige cotton nonwoven fabric treated with diammonium phosphate. Polym Degrad Stab, 96, 2010 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.08.014.
  22. Sponton M, Ronda JC, Galia M, Cadiz V. Studies on thermal and flame retardant behaviour of mixtures of bis(m-aminophenyl) methylphosphine oxide based benzoxazine and glycidylether or benzoxazine of Bisphenol A. Polym Degrad Stab, 93, 2158 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.08.004.
  23. Xu A, Zhang Y, Lu W, Yao K, Xu H. Effect of alkyl chain length in anion on dissolution of cellulose in 1-butyl-3-methylimidazolium carboxylate ionic liquids. J Mol Liq, 197, 211 (2014). https://doi.org/10.1016/j.molliq.2014.05.018.
  24. Roman M, Winter WT. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules, 5, 1671 (2004). https://doi.org/10.1021/bm034519+.
  25. Bai BC, Kim EA, Jeon YP, Lee CW, In SJ, Lee YS, Im JS. Improved flame-retardant properties of lyocell fiber achieved by phosphorus compound. Mater Lett, 135, 226 (2014). https://doi.org/10.1016/j.matlet.2014.07.131.
  26. Statheropoulos M, Kyriakou SA. Quantitative thermogravimetric-mass spectrometric analysis for monitoring the effects of fire retardants on cellulose pyrolysis. Anal Chim Acta, 409, 203 (2000). https://doi.org/10.1016/s0003-2670(99)00859-4.