DOI QR코드

DOI QR Code

Analysis of Future Bioclimatic Zones Using Multi-climate Models

다중기후모형을 활용한 동북아시아의 미래 생물기후권역 변화분석

  • Choi, Yuyoung (Dept. of Environmental Science and Ecological Engineering, Korea University) ;
  • Lim, Chul-Hee (Institute of Life Science and Natural Resources, Korea University) ;
  • Ryu, Jieun (Environmental GIS/RS Center, Korea University) ;
  • Jeon, Seongwoo (Dept. of Environmental Science and Ecological Engineering, Korea University)
  • 최유영 (고려대학교 환경생태공학과) ;
  • 임철희 (고려대학교 생명자원연구소) ;
  • 류지은 (고려대학교 환경GIS/RS센터) ;
  • 전성우 (고려대학교 환경생태공학과)
  • Received : 2018.09.12
  • Accepted : 2018.10.04
  • Published : 2018.10.31

Abstract

As climate changes, it is necessary to predict changes in the habitat environment in order to establish more aggressive adaptation strategies. The bioclimatic classification which clusters of areas with similar habitats can provide a useful ecosystem management framework. Therefore, in this study, biological habitat environment of Northeast Asia was identified through the establishment of the bioclimatic zones, and the impac of climate change on the biological habitat was analyzed. An ISODATA clustering was used to classify Northeast Asia (NEA)into 15 bioclimatic zones, and climate change impacts were predicted by projecting the future spatial distribution of bioclimatic zones based upon an ensemble of 17 GCMs across RCP4.5 and 8.5 scenarios for 2050s, and 2070s. Results demonstrated that significant changes in bioclimatic conditions can be expected throughout the NEA by 2050s and 2070s. The overall zones moved upward, and some zones were predicted to be greatly expanded or shrunk where we suggested as regions requiring intensive management. This analysis provides the basis for understanding potential impacts of climate change on biodiversity and ecosystem. Also, this could be used more effectively to support decision making on climate change adaptation.

기후변화에 대응하여 보다 적극적인 생물보전전략 수립을 위해 생물 서식환경의 변화예측이 필요하며, 생물기후권역은 유용한 생태계 관리체계를 제공할 수 있다. 이에 따라 본 연구에서는 생물기후권역구축을 통해 동북아시아의 생물 서식환경을 파악하고, 생물 서식관점에서 기후변화의 영향을 분석하였다. Worldclim에서 제공하는 현재(1970~2000년) 기후자료 및 17개 전 지구 기후모형의 예측자료(RCP4.5, RCP8.5)를 이용하여 2050년대와 2070년대의 변화를 모의하였다. 먼저 현재와 미래의 주요생물기후변수(Aridity index, growing degree days, potential evapotranspiration seasonality, temperature seasonality)를 구축하여 동북아시아의 생물기후환경 특성을 파악하고, 기후변화에 따른 시공간적 변화를 분석하였다. ISODATA 군집분석으로 현재의 생물기후권역을 구분하고, MLC(Maximum Likelihood Classification)를 통해 미래의 권역변화를 예측하였다. 기후변화에 따라 대부분의 권역이 북상하는 경향성을 확인할 수 있었으며, 권역의 면적과 위도 분포변화를 분석함으로써 권역의 축소가 가장 두드러지게 나타나는 중국 남부에 위치한 권역을 집중 관리권역으로 제시하였다. 본 연구는 한반도를 포함한 동북아시아 지역의 다양한 기후변화 시나리오에 따른 영향평가를 바탕으로 향후 기후변화에 대응한 생물종 혹은 생태계 관련 적응정책 수립 시 활용 가능한 기초자료를 제공할 수 있을 것으로 사료된다.

Keywords

References

  1. Allen RG. 2000. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. Journal of Hydrology. 229(1-2): 27-41. https://doi.org/10.1016/S0022-1694(99)00194-8
  2. Araujo MB, Cabeza M, Thuiller W, Hannah L, Williams PH. 2004. Would climate change drive species out of reserves? An assessment of existing reserve selection methods. Global change biology. 10(9): 1618-1626. https://doi.org/10.1111/j.1365-2486.2004.00828.x
  3. Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W. 2011. Impacts of climate change on the world's most exceptional ecoregions. Proceedings of the National Academy of Sciences. 201007217.
  4. Booth TH. 1990. Mapping regions climatically suitable for particular tree species at a global scale. Forest Ecology and Management. 36: 47-60. https://doi.org/10.1016/0378-1127(90)90063-H
  5. IPCC. 2014. Change 2014: Synthesis Report. Contri- bution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. p.151.
  6. Choi S. Lee WK, Kwak DA, Lee S, Son Y, Lim JH, Saborowski J. 2011. Predicting forest cover changes in future climate using hydrological and thermal indices in South Korea. Climate Research. 49(3): 229-245. https://doi.org/10.3354/cr01026
  7. Choi Y, Lim CH, Ryu J, Jeon SW. 2017b. Bioclimatic Classification of Northeast Asia Reflecting Social Factors: Development and Characterization. Sustainability. 9(7): 1137. https://doi.org/10.3390/su9071137
  8. Choi Y, Lim CH, Ryu J, Dongfan P, Kang JY, Weihong Z, Guishan C, Lee WK, Jeon SW. 2017a. Bioclimatic Classification and Characterization in South Korea. Korea Society of Environmental Restoration Technology. 20(3): 1-18. [Korean Literature]
  9. Coops N, Loughhead A, Ryan P. 2001. Development of daily spatial heat unit mapping from monthly climatic surfaces for the Australian continent. International Journal of Geographical Information Science. 15: 345-361. https://doi.org/10.1080/13658810010011401
  10. Davidson MD. 2017. Equity and the Conservation of Global Ecosystem Services. Sustainability. 9: 339. https://doi.org/10.3390/su9030339
  11. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM. 2011. Beyond predictions: biodiversity conservation in a changing climate. Science. 332(6025): 53-58. https://doi.org/10.1126/science.1200303
  12. Dinerstein E, Olson D, Joshi A, Vynne C, Burgess ND, Wikramanayake E, Hahn N, Palminteri S, Hedao P, Noss R, Hansen M. 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience. 67(6): 534-545. https://doi.org/10.1093/biosci/bix014
  13. Fick SE, Hijmans RJ. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology.
  14. Hannah L, Midgley G, Andelman S, Araujo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P. 2007. Protected area needs in a changing climate. Frontiers in Ecology and the Environment. 5(3): 131-138. https://doi.org/10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2
  15. Hargreaves GH, Allen RG. 2003. History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering. 129(1): 53-63. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
  16. Hargreaves GH. 1994. Defining and using reference evapotranspiration. Journal of Irrigation and Drainage Engineering. 120(6): 1132-1139. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132)
  17. Richard JH, David NC, Laurie Y, Erika SZ, Gregory HAF, Stuart C, Peter BL, David JP, Nathan LS, Peter SW, David MG, Eric SH, Connie M, John M. 2010. Guiding concepts for park and wilderness stewardship in an era of global environmental change. Frontiers in Ecology and the Environment. 8: 483-490. https://doi.org/10.1890/090089
  18. Hole DG, Willis SG, Pain DJ, Fishpool LD, Butchart SH, Collingham YC, Rahbek C, Huntley B. 2009. Projected impacts of climate change on a continent wide protected area network. Ecology letters. 12(5): 420-431. https://doi.org/10.1111/j.1461-0248.2009.01297.x
  19. Hong SY, Oh SG, Suh MS, Lee DK, Ahn JB, Kang HS. 2013. Future Climate Changes over North-East Asian Region Simulated by RegCM4 Based on the RCP Scenarios. Journal of climate research. 8(1): 27-44. [Korean Literature]
  20. Jeon HS, Cho GS. 2000. A comparison of neural networks and maximum likelihood classifier for the classification of landcover. Journal of Korean Society for Geospatial Information System. 8(2): 23-33. [Korean Literature]
  21. Kim WJ. 2004. Ecoregion classification in Korea based on analysis of geospatial variables. Interdisciplinary Doctoral Program in Landscape Architecture Major Graduate School Seoul National University. [Korean Literature]
  22. Kim G, Kim J, Kim CJ, Jin CS, Suh MS, Park SC, Cha DH. 2014. Climate Change Projections over CORDEX East Asia Domain using Multi-RCMs. Journal of climate research. 9(4): 257-268. [Korean Literature] https://doi.org/10.14383/cri.2014.9.4.257
  23. Kim JH, Yun JI. 2008. On Mapping Growing Degree-Days (GDD) from Monthly Digital Climatic Surfaces for South Korea. Korean Journal of Agricultural and Forest Meteorology. 10(1): 1-8. [Korean Literature] https://doi.org/10.5532/KJAFM.2008.10.1.001
  24. Kim SJ, Kim MI, Lim CH, Lee WK, Kim BJ. 2017. Applicability Analysis of FAO56 Penman-Monteith Methodology for Estimating Potential Evapotranspiration in Andong Dam Watershed Using Limited Meteorological Data. Journal of Climate Change Research. 8(2): 125-143. [Korean Literature] https://doi.org/10.15531/ksccr.2017.8.2.125
  25. Kong WS. 2005. Selection of Vulnerable Indicator Plants by Global Warming. Asia-Pacific Journal of Atmospheric Sciences. 41(2-1): 263-273. [Korean Literature]
  26. Kwon YA, Kwon WT, Boo KO, Choi YE. 2007. Future projections on subtropical climate regions over South Korea using SRES A1B data. Journal of the Korean Geographical Society. 42. [Korean Literature]
  27. Lee H, Kim G, Park C, Cha DH. 2017. A Study of Future Changes of Climate Classification and Extreme Temperature Events over South Korea in Multi Regional Climate Model Simulations. Journal of Climate Research. 12: 149-164. https://doi.org/10.14383/cri.2017.12.2.149
  28. Lee SG, Seo TC, Jang YA, Lee JG, Nam CW, Choi CS, Um YC. 2012. Prediction of Chinese cabbage yield as affected by planting date and nitrogen fertilization for spring production. Journal of Bio-Environment Control.
  29. Lee SC, Choi SH, Lee WK. 2011. Vulnerability Assessment of Forest Distribution by the Climate Change Scenarios. Korean Forest Society. 435-438.
  30. Lee WC, Lim YJ. 2002. Phytogeography. Kangwon national university.
  31. Lim CH, Yoo S, Choi Y, Jeon SW, Son Y, Lee WK. 2018. Assessing Climate Change Impact on Forest Habitat Suitability and Diversity in the Korean Peninsula. Forests. 9(5): 259. https://doi.org/10.3390/f9050259
  32. Liu C, Sun G, McNulty SG, Noormets A, Fang Y. 2017. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements. Hydrology and Earth System Sciences. 21(1): 311-322. https://doi.org/10.5194/hess-21-311-2017
  33. Li W, Ciais P, MacBean N, Peng S, Defourny P, Bontemps S. 2016. Major forest changes and land cover transitions based on plant functional types derived from the ESA CCI Land Cover product. International journal of applied earth observation and geoinformation. 47: 30-39. https://doi.org/10.1016/j.jag.2015.12.006
  34. Mackey BG, McKenney DW, Yang YQ, McMahon JP, Hutchinson MF. 1996. Site regions revisited: a climatic analysis of Hills' site regions for the province of Ontario using a parametric method. Canadian Journal of Forest Research. 26(3): 333-354. https://doi.org/10.1139/x26-038
  35. Metzger MJ, Brus DJ, Bunce RG, Carey H, Goncalves PD, Honrado JP, Jongman RHG, Trabucco A, Zomer R. 2013b. Environmental stratifications as the basis for national, European and global ecological monitoring. Ecological Indicators. 33: 26-35. https://doi.org/10.1016/j.ecolind.2012.11.009
  36. Metzger MJ, Bunce RGH, Jongman RHH, Mucher CA, Watkins JW. 2005. A climatic stratification of the environment of Europe. Global ecology and biogeography. 14(6): 549-563. https://doi.org/10.1111/j.1466-822X.2005.00190.x
  37. Metzger MJ, Bunce RG, Jongman RH, Sayre R, Trabucco A, Zomer R. 2013a. A high resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Global Ecology and Biogeography. 22(5): 630-638. https://doi.org/10.1111/geb.12022
  38. National Institute of Environmental Research. 2007. Assessments of Ecosystems Sensitive to Climate Change(I) : With Emphasis on Bioclimatic Classification.
  39. Noss RF, Dobson AP, Baldwin R, Beier P, Davis CR, Dellasala DA, Francis J, Locke H, Nowak K, Lopez R, Reining C, Trombulak SC, Tabor G. Bolder thinking for conservation. Conservation Biology 26: 1-4.
  40. O'Donnell MS, Ignizio DA. 2012. Bioclimatic predictors for supporting ecological applications in the conterminous United States: U.S. Geological Survey Data Series 691: 10 p.
  41. David MO, Eric D, Eric DW, Neil DB, George VNP, Emma CU, Jennifer AD, Illanga I, Holly ES, John CM, Colby JL, Thomas FA, Taylor HR, Yumiko K, John F, Lamoreux WW, Wettengel PH, Kenneth RK. 2001. Terrestrial ecoregions of the world: A new map of life on Earth. BioScience. 51: 933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
  42. Park CY, Choi YE, Kwon YA, Kwon JI, Lee HS. 2013. Studies on changes and future projections of subtropical climate zones and extreme temperature events over South Korea using high resolution climate change scenario based on PRIDE model. Journal of the Korean association of regional geographers. 19. [Korean Literature]
  43. Park SU, Koo KA, Kong W. 2016. Potential impact of climate change on distribution of warm temperate evergreen broad-leaved trees in the Korean Peninsula. Journal of the Korean Geographical Society. 51(2): 201-217. [Korean Literature]
  44. Parr TW, Sier AR, Battarbee RW, Mackay A, Burgess J. 2003. Detecting environmental change: Science and society-Perspectives on long-term research and monitoring in the 21st century. Sci. Total Environ. 310: 1-8. https://doi.org/10.1016/S0048-9697(03)00257-2
  45. Ren JL, Li QF, Yu MX, Li HY. 2012. Variation trends of meteorological variables and their impacts on potential evaporation in Hailar region. Water Science and Engineering. 5(2): 137-144. https://doi.org/10.3882/j.issn.1674-2370.2012.02.002
  46. Sheldon KS, Leache AD, Cruz FB. 2015. The influence of temperature seasonality on elevational range size across latitude: a test using L iolaemus lizards. Global Ecology and Biogeography. 24(6): 632-641. https://doi.org/10.1111/geb.12284
  47. Shin JH, Kim CM. 1996. Ecosystem classification in Korea (I): Ecoregion classification. Korea Forest Reserach Institute. ForestScience. 54: 188-189. [Korean Literature]
  48. Shin Y, Jung H. 2015. Assessing uncertainty in future climate change in Northeast Asia using multiple CMIP5 GCMs with four RCP scenarios. J.Environ. Impact Assess. 24(3): 205-216. [Korean Literature] https://doi.org/10.14249/eia.2015.24.3.205
  49. Soteriades AD, Murray-Rust D, Trabucco A, Metzger MJ. 2017. Understanding global climate change scenarios through bioclimate stratification. Environmental Research Letters. 12(8): 084002. https://doi.org/10.1088/1748-9326/aa7689
  50. Staudinger MD, Carter SL, Cross MS, Dubois NS, Duffy JE, Enquist C, Duffy JE, Enquist C, Griffis R, Hellmann JJ, Lawler JJ, O'Leary J, Morrison SA, Sneddon L, Stein BA, Thompson LM, Turner W. 2013. Biodiversity in a changing climate: a synthesis of current and projected trends in the US. Frontiers in Ecology and the Environment. 11(9): 465-473. https://doi.org/10.1890/120272
  51. Svenning JC, Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. American Journal of Botany. 100(7): 1266-1286. https://doi.org/10.3732/ajb.1200469
  52. UNEP. 1992. World Atlas of Desertification.
  53. UNESCO. 1979. Map of the world distribution of arid regions: explanatory note. MAP Technical Notes 7, UNESCO: Paris, 54.
  54. WWF. 2015. Impact of Climate Change on Species.
  55. Xu L, Myneni RB, Chapin IFS, Callaghan TV, Pinzon JE, Tucker CJ, Zhu Z, Bi J, Ciais P, Tommervik H, Euskirchen ES, Forbes BC, Piao SL, Anderson BT, Ganguly S, Nemani RR, Goetz SJ, Beck PSA, Bunn AG, Cao C, Stroeve JC. 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change. 3(6): 581. https://doi.org/10.1038/nclimate1836
  56. Yokoo Y, Sivapalan M, Oki T. 2008. Investigating the roles of climate seasonality and landscape characteristics on mean annual and monthly water balances. Journal of Hydrology. 357(3-4): 255-269. https://doi.org/10.1016/j.jhydrol.2008.05.010
  57. Zomer RJ, Trabucco A, Wang M, Lang R, Chen H, Metzger MJ, Smajgl A, Beckschafer P, Xu J. 2014. Environmental stratification to model climate change impacts on biodiversity and rubber production in Xishuangbanna, Yunnan, China. Biological Conservation. 170: 264-273. https://doi.org/10.1016/j.biocon.2013.11.028