DOI QR코드

DOI QR Code

Comparative Evaluation of UAV NIR Imagery versusin-situ Point Photo in Surveying Urban Tributary Vegetation

도심소하천 식생조사에서 현장사진과 UAV 근적외선 영상의 비교평가

  • Lee, Jung-Joo (Department of Spatial Information Science, Kyungpook National University) ;
  • Hwang, Young-Seok (Department of Climate Change, Kyungpook National University) ;
  • Park, Seong-Il (Department of Climate Change, Kyungpook National University) ;
  • Um, Jung-Sup (Department of Geography, Kyungpook National University)
  • 이정주 (경북대학교 공간정보학과) ;
  • 황영석 (경북대학교 기후변화학과) ;
  • 박성일 (경북대학교 기후변화학과) ;
  • 엄정섭 (경북대학교 지리학과)
  • Received : 2018.08.24
  • Accepted : 2018.10.02
  • Published : 2018.10.31

Abstract

Surveying urban tributary vegetation is based mainly on field sampling at present. The tributary vegetation survey integrating UAV NIR(Unmanned Aerial Vehicle Near Infrared Radiance) imagery and in-situ point photo has received only limited attentions from the field ecologist. The reason for this could be the largely undemonstrated applicability of UAV NIR imagery by the field ecologist as a monitoring tool for urban tributary vegetation. The principal advantage of UAV NIR imagery as a remote sensor is to provide, in a cost-effective manner, information required for a very narrow swath target such as urban tributary (10m width or so), utilizing very low altitude flight, real-time geo-referencing and stereo imaging. An exhaustive and realistic comparison of the two techniques was conducted, based on operational customer requirement of urban tributary vegetation survey: synoptic information, ground detail and quantitative data collection. UAV NIR imagery made it possible to identify area-wide patterns of the major plant communities subject to many different influences (e.g. artificial land use pattern), which cannot be acquired by traditional field sampling. Although field survey has already gained worldwide recognition by plant ecologists as a typical method of urban tributary vegetation monitoring, this approach did not provide a level of information that is either scientifically reliable or economically feasible in terms of urban tributary vegetation (e.g. remedial field works). It is anticipated that this research output could be used as a valuable reference for area-wide information obtained by UAV NIR imagery in urban tributary vegetation survey.

현재 도심 소하천의 식생조사는 주로 현장조사에 의존하여 이루어진다. UAV NIR(Unmanned Aerial Vehicle Near Infrared) 영상은 매우 낮은 고도에서 취득할 수 있어 도심 소하천과 같이 폭이 매우 좁은 표적(10m 내외)에 필요한 정보를 효율적으로 제공할 수 있다. 하지만 UAV NIR영상이 도심소하천의 식생 조사도구로서 검증되지 않아, UAV NIR 영상과 현장사진을 통합한 선행연구는 존재하지 않는다. 따라서 본 연구에서는 전통적인 원격탐사의 영역이 아니었던 국부적인 대상인 도심소하천 식생조사에서 UAV NIR 영상과 현장사진의 비교평가를 실시하였다. 하천 식생조사 결과를 실무에서 활용하는데 필요한 요구 사항을 고려하여 광역공간정보, 미시적인 정보 및 정량적인 데이터 확보 등 다양한 측면에서 분석이 수행되었다. UAV NIR 영상은 전통적인 현장조사에서 취득할 수 없었던 거시적인 주변 환경(예: 인공적인 토지 이용에 따른 영향)에 따른 식생군집패턴의 변화를 추적할 수 있었다. 현장조사는 전세계적으로 도심 소하천 식생 모니터링 방법으로 정착되었지만, 거시적인 정보의 취득에서 상당한 한계를 노출하였으며 정량적인 정보를 확보하는 과정에서도 신뢰성에 한계를 노출하였다. 본 연구가 도심 소하천의 식생조사에서 거시적이고 정량화되고 객관적인 데이터가 부재하여 직면하였던 한계를 극복할 수 있는 계기가 되어 향후 UAV NIR 원격탐사에서 확보할 수 있는 정보의 수준을 파악할 수 있는 중요한 참고자료가 될 수 있을 것으로 사료된다.

Keywords

References

  1. Ahn TJ, Lee JE, Lee SO, Cheong TS. 2011. Analysis of the Preventive Investment Effect of Small Stream Improvement. Journal of Korean Society of Hazard Mitigation. 11(4): 163-169. [Korean Literature] https://doi.org/10.9798/KOSHAM.2011.11.4.163
  2. Akasheh OZ, Neale CMU, Jayanthi H. 2008. Detailed mapping of riparian vegetation in the middle Rio Grande River using high resolution multi-spectral airborne remote sensing. Journal of Arid Environments. 72(9): 1734-1744. https://doi.org/10.1016/j.jaridenv.2008.03.014
  3. Choi JK. 1995. Ecological Rehabilitation Programs for River Environment in Cities. The Korean Institute of Landscape Architecture. 22(2): 191-197. [Korean Literature]
  4. Dressing S, Meals D, Harcum J, Spooner J, Stribling J, Richards R, Millard C, Lanberg S, O'Donnell J. 2016. Monitoring and Evaluating Nonpoint Source Watershed Projects.
  5. Isabelle C, Olivier L, G RA, Claudine B, Samuel T. 2008. Changes in riparian habitats along five major tributaries of the saint Lawrence river, QuEbec, Canada: 1964-1997. River Research and Applications. 24(5): 617-631. https://doi.org/10.1002/rra.1133
  6. Johansen K, Phinn S. 2006. Mapping Structural Parameters and Species Composition of Riparian Vegetation Using IKONOS and Landsat ETM Data in Australian Tropical Savannahs. Photogrammetric Engineering & Remote Sensing. 72(1): 71-80. https://doi.org/10.14358/PERS.72.1.71
  7. Korean Ministry of Environment. 2017. Regulations on Preparations of Environmental Impact Statements etc. Notification of Ministry of Environment. 224-243. [Korean Literature]
  8. Lee GS, Choi JM, Joh CH. 2015. Method to Extract Coastline Changes Using Unmanned Aerial Vehicle. The Korean Geographlcal Society. 50(5): 473-483. [Korean Literature]
  9. Lee GS, Kim SW, Lee KH. 2017. Identification of Aquatic Plants in the Muncheon Water Reservoir Using Drone-based Information. Journal of Environmental Science International. 26(5): 685-689. [Korean Literature] https://doi.org/10.5322/JESI.2017.26.5.685
  10. Lee HJ, Eom JS, Yu YG, Park EG. 2013. Application of Smart Geospatial Information for Modeling and Analysis of City River. Journal of Korean Society for Geospatial Information System. 21(4): 135-142. [Korean Literature] https://doi.org/10.7319/kogsis.2013.21.4.135
  11. Lee JO, Sung SM. 2016. Evaluating spatial resolution for quality assurance of UAV images. Spatial Information Research. 24(2): 141-154. https://doi.org/10.1007/s41324-016-0015-0
  12. Moon HG, Lee SM, Cha JG. 2017. Land Cover Classification Using UAV Imagery and Object-Based Image Analysis - Focusing on the Maseo-myeon, Seocheon-gun, Chungcheongnam-do-. Journal of the Korean Association of Geographic Information Studies. 20(1): 1-14. [Korean Literature] https://doi.org/10.11108/KAGIS.2017.20.1.001
  13. Myung H. 2009. The Vegetational Diagnosis for the Ecological Rehabilitation of Stream - In case of the Forest Communities, Soil in Namhan River. Journal of the Environmental Sciences. 18(11): 113-127. [Korean Literature] https://doi.org/10.5322/JES.2009.18.1.113
  14. Park JK, Park JH. 2015. Crops Classification Using Imagery of Unmanned Aerial Vehicle (UAV). Journal of The Korean Society of Agricultural Engineers. 57(6): 91-97. [Korean Literature] https://doi.org/10.5389/KSAE.2015.57.6.091
  15. Sloan J, Miller JR, Lancaster N. 2001. Response and recovery of the Eel River, California, and its tributaries to floods in 1955, 1964, and 1997. Geomorphology. 36(3): 129-154. https://doi.org/10.1016/S0169-555X(00)00037-4
  16. Truscott AM, Palmer SCF, Soulsby C, Hulme PE. 2008. Assessing the vulnerability of riparian vegetation to invasion by Mimulus guttatus: relative importance of biotic and abiotic variables in determining species occurrence and abundance. Diversity and Distributions. 14(2): 412-421. https://doi.org/10.1111/j.1472-4642.2007.00449.x
  17. Um JS. 2004. Airborne video as a remote sensor for environmental monitoring of linear infrastructure: a case study and review. Journal of Korea Spatial Information Society. 12(4): 351-370.
  18. Um JS. 2008. Google Earth Image Map linked to 1:1000 Scale Digital Map: Monitoring Pervious Surface for University Campus. Discourse and Policy in Social Science. 1: 23-43. [Korean Literature]
  19. Um JS. 2018. Evaluating patent tendency for UAV related to spatial information in South Korea. Spatial Information Research. 26(2): 143-150. https://doi.org/10.1007/s41324-018-0163-5
  20. Woo HJ, Baek SC, Hong WH, Chung MS, Kim HD, Hwang JH. 2018. Evaluating orthophoto production potentials based on UAV real-time geo-referencing points. Spatial Information Research. 1-8.
  21. Yu Q, Gong P, Clinton N, Biging G, Kelly M. 2006. Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery. Photogrammetric Engineering & Remote Sensing. 72(7): 799-811. https://doi.org/10.14358/PERS.72.7.799

Cited by

  1. Comparative Evaluation of Mapping Accuracy between UAV Video versus Photo Mosaic for the Scattered Urban Photovoltaic Panel vol.13, pp.14, 2018, https://doi.org/10.3390/rs13142745
  2. Evaluating the Correlation between Thermal Signatures of UAV Video Stream versus Photomosaic for Urban Rooftop Solar Panels vol.13, pp.23, 2018, https://doi.org/10.3390/rs13234770