DOI QR코드

DOI QR Code

Microstructural and Wear Properties of WC-based and Cr3C2-based Cermet Coating Materials Manufactured with High Velocity Oxygen Fuel Process

고속 화염 용사 공정으로 제조된 WC계 및 Cr3C2계 Cermet 코팅 소재의 미세조직 및 마모 특성

  • Kang, Yeon-Ji (Department of Materials Science & Engineering, Inha University) ;
  • Ham, Gi-Su (Department of Materials Science & Engineering, Inha University) ;
  • Kim, Hyung-Jun (Research Industrials Science & Technology) ;
  • Yoon, Sang-Hoon (Research Industrials Science & Technology) ;
  • Lee, Kee-Ahn (Department of Materials Science & Engineering, Inha University)
  • 강연지 (인하대학교 신소재공학과) ;
  • 함기수 (인하대학교 신소재공학과) ;
  • 김형준 (포항산업과학연구원) ;
  • 윤상훈 (포항산업과학연구원) ;
  • 이기안 (인하대학교 신소재공학과)
  • Received : 2018.10.12
  • Accepted : 2018.10.23
  • Published : 2018.10.28

Abstract

This study investigates the microstructure and wear properties of cermet (ceramic + metal) coating materials manufactured using high velocity oxygen fuel (HVOF) process. Three types of HVOF coating layers are formed by depositing WC-12Co, WC-20Cr-7Ni, and Cr3C2-20NiCr (wt.%) powders on S45C steel substrate. The porosities of the coating layers are $1{\pm}0.5%$ for all three specimens. Microstructural analysis confirms the formation of second carbide phases of $W_2C$, $Co_6W_6C$, and $Cr_7C_3$ owing to decarburizing of WC phases on WC-based coating layers. In the case of WC-12Co coating, which has a high ratio of $W_2C$ phase with high brittleness, the interface property between the carbide and the metal binder slightly decreases. In the $Cr_3C_2-20CrNi$ coating layer, decarburizing almost does not occur, but fine cavities exist between the splats. The wear loss occurs in the descending order of $Cr_3C_2-20NiCr$, WC-12Co, and WC-20Cr-7Ni, where WC-20Cr-7Ni achieves the highest wear resistance property. It can be inferred that the ratio of the carbide and the binding properties between carbide-binder and binder-binder in a cermet coating material manufactured with HVOF as the primary factors determine the wear properties of the cermet coating material.

Keywords

References

  1. H. L. Lovelock: J. Therm. Spray Technol., 7 (1998) 357. https://doi.org/10.1361/105996398770350846
  2. M. Li, D. Shi and P. D. Christofides: Powder Technol., 156 (2005) 177. https://doi.org/10.1016/j.powtec.2005.04.011
  3. W. Tillmann, E. Vogli, I. Baumann, G. Matthaeus and T. Ostrowski: J. Therm. Spray Technol., 17 (2008) 924. https://doi.org/10.1007/s11666-008-9234-9
  4. L. FedrizziL. Valentinelli, S. Rossi and S. Segna: Corros. Sci., 49 (2007) 2781. https://doi.org/10.1016/j.corsci.2007.02.003
  5. K. J. Stein, B. S. Schorr and A. R. Marder: Wear, 224 (1999) 153. https://doi.org/10.1016/S0043-1648(98)00298-1
  6. L. Fedrizzi, S. Rossi, R. Cristel and P. L. Bonora: Electrochimica Acta, 49 (2004) 2803. https://doi.org/10.1016/j.electacta.2004.01.043
  7. F. Rastegar and D.E. Richardson: Surf. Coat. Technol., 90 (1997) 156. https://doi.org/10.1016/S0257-8972(96)03112-X
  8. S. Y. Kang, K. H. Baik, S. H. Yoon and H. J. Kim: Korean J. Met. Mater., 56 (2018) 113. (Korean)
  9. G. S. Ham, C. O. Kim, S. H. Park and K. A. Lee: J. Korean Powder Metall. Inst., 24 (2017) 370. (Korean) https://doi.org/10.4150/KPMI.2017.24.5.370
  10. E. Zdravecka, J. Suchanek, J. Tkacova, J. Trpcevska and K. Brinkiene: Mechanika., 84 (2010) 75.
  11. S. Stewart and R. Ahmed: Wear, 253 (2002) 1132. https://doi.org/10.1016/S0043-1648(02)00234-X
  12. D. A. Stewart, P. H. Shipway and D. G. McCartney: Wear, 225 (1999) 789.
  13. Y. Qiao , T. E. Fischer and A. Dent: Surf. Coat. Technol., 172 (2003) 24. https://doi.org/10.1016/S0257-8972(03)00242-1
  14. J. M. Guilemany, S. Dosta, J. Nin and J. R. Miguel: J. Therm. Spray Technol., 14 (2005) 405.
  15. J. M. Guilemany, J. M. de Paco, J. Nutting and J. R. Miguel: Metall. Mater. Trans. A, 30 (1999) 1913. https://doi.org/10.1007/s11661-999-0002-3