DOI QR코드

DOI QR Code

A Study on Pore Properties of SUS316L Powder Porous Metal Fabricated by Electrostatic Powder Coating Process

정전분체코팅 공정으로 제조된 SUS316L 분말 다공체의 기공 특성에 관한 연구

  • Lee, Min-Jeong (Metal Powder Department, Korea Institute of Materials Science (KIMS)) ;
  • Yi, Yu-Jeong (Metal Powder Department, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Hyeon-Ju (Metal Powder Department, Korea Institute of Materials Science (KIMS)) ;
  • Park, Manho (R&D Center, ASFLOW CO. Ltd) ;
  • Kim, Byoung-Kee (Department of Materials Science and Engineering, University of Ulsan) ;
  • Yun, Jung-Yeul (Metal Powder Department, Korea Institute of Materials Science (KIMS))
  • 이민정 (한국기계연구원 부설 재료연구소 금속분말연구실) ;
  • 이유정 (한국기계연구원 부설 재료연구소 금속분말연구실) ;
  • 김현주 (한국기계연구원 부설 재료연구소 금속분말연구실) ;
  • 박만호 ((주)아스플로 기술연구소) ;
  • 김병기 (울산대학교 첨단소재공학부) ;
  • 윤중열 (한국기계연구원 부설 재료연구소 금속분말연구실)
  • Received : 2018.10.12
  • Accepted : 2018.10.20
  • Published : 2018.10.28

Abstract

Porous metals demonstrate not only excessively low densities, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Thus, porous metals exhibit exceptional performance, which are useful for diesel particulate filters, heat exchangers, and noise absorbers. In this study, SUS316L foam with 90% porosity and $3,000{\mu}m$ pore size is successfully manufactured using the electrostatic powder coating (ESPC) process. The mean size of SUS316L powders is approximately $12.33{\mu}m$. The pore properties are evaluated using SEM and Archimedes. As the quantity of powder coating increases, pore size decreases from 2,881 to $1,356{\mu}m$. Moreover, the strut thickness and apparent density increase from 423.7 to $898.3{\mu}m$ and from 0.278 to $0.840g/cm^3$, respectively. It demonstrates that pore properties of SUS316L powder porous metal are controllable by template type and quantity of powder coating.

Keywords

References

  1. G. Ryan, A. Pandit and D. P. Apatsidis: Biomaterials 27 (2006) 2651. https://doi.org/10.1016/j.biomaterials.2005.12.002
  2. John Banhart : Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  3. D. T. Queheillalt, D. D. Hass, D. J. Sypeck and H. N. G. Wadley: J. Mater. Res., 16 (2001) 1028. https://doi.org/10.1557/JMR.2001.0143
  4. Y. Boonyongmaneerat and D. C. Dunand: Adv. Eng. Mater. 10 (2008) 379. https://doi.org/10.1002/adem.200700300
  5. O. Smorygo, V. Mikutski, A. Leonov, A. Marukovich and Y. Vialiuha: Scr. Mater., 58 (2008) 910. https://doi.org/10.1016/j.scriptamat.2008.01.014
  6. D.T. Queheillalt, Y. Katsumura and H. N. G. Wadley: Scr. Mater., 50 (2004) 313. https://doi.org/10.1016/j.scriptamat.2003.10.016
  7. K. A. Khor, L. G. Yu, O. Andersen and G. Stephani: Mater. Sci. Eng., A, 356 (2003) 130. https://doi.org/10.1016/S0921-5093(03)00111-4
  8. H. Choe and D. C. Dunand : Mater. Sci. Eng., A, 384 (2004) 184. https://doi.org/10.1016/S0921-5093(04)00814-7
  9. H. Choe and D.C. Dunand: Acta Mater., 52 (2004) 1283. https://doi.org/10.1016/j.actamat.2003.11.012
  10. J. Choi and K. Kim : J. Korean Powder Metall. Inst., 17 (2010) 489. (Korean) https://doi.org/10.4150/KPMI.2010.17.6.489
  11. B. A. A. L. Van Setten, M. Makkee and J. A. Moulijn : Catal. Rev. Sci. Eng., 43 (2001) 489. https://doi.org/10.1081/CR-120001810