• Title/Summary/Keyword: High velocity oxygen fuel

Search Result 56, Processing Time 0.028 seconds

Reduction Characteristics of Oxygen Carriers in a Pressurized Bubbling Fluidized Bed (가압 기포유동층에서 산소전달입자들의 환원반응특성)

  • YOON, JOO-YOUNG;BAE, DAL-HEE;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.589-596
    • /
    • 2016
  • Effects of pressure, temperature, gas velocity, and fuel flow rate on reduction of three oxygen carriers, SDN70, OC-1, OC-2, were measured and investigated in a pressurized bubbling fluidized bed reactor. Among three oxygen carriers OC-2 was selected as the best oxygen carrier in view of fuel conversion and $CO_2$ selectivity. However, all oxygen carriers showed good reactivity even at high pressure conditions. SDN70 particle showed maximum reactivity at $900^{\circ}C$ and low reactivity at $950^{\circ}C$. However, reactivity decay of OC-1 and OC-2 particles at high temperature condition was negligible. The fuel conversion and the $CO_2$ selectivity slightly decreased as the gas velocity increased, whereas they are slightly increased as the fuel concentration increased.

Formation of Oxy-Fuel MILD Combustion under Different Operating Conditions (가동조건 변화에 따른 순산소 마일드 연소 형성 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.577-587
    • /
    • 2016
  • Although the formation of oxy-fuel MILD combustion is considered one of the promising combustion technologies for high thermal efficiency, low emissions and stability have been reported as difficulties. In this paper, the effect of combustor geometry and operating conditions on the formation of oxy-fuel MILD combustion was analyzed using numerical simulation. The results show that the high temperature region and average temperature decreased due to an increase in oxygen inlet velocity; moreover, a high degree of temperature uniformity was achieved using an optimized combination of fuels and an oxygen injection configuration without external oxygen preheating. In particular, the oxy-fuel MILD combustion flame was found to be very stable with a combustion flame region at equivalence ratio 0.90, fuel velocity 10 m/s, oxygen velocity 200 m/s, and nozzle distance 33.5 mm.

The Effect of High Velocity Oxygen Fuel Thermal Spray Coating on Fatigue Crack Growth Behavior for Welded SM490B (SM490B 용접부의 피로균열 성장 거동에 미치는 초고속 용사코팅 효과)

  • Yoon, Myung-Jin;Choi, Sung-Jong;Cho, Won-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.99-106
    • /
    • 2006
  • High velocity oxygen-fuel thermal spray coating of the WC-Co cermet material is a well-established process for modifying the surface properties of the structural components exposed to the corrosive and wear attacks, and also these coating are well-known method to improve the fatigue strength of material. In this study, HVOF coated SM490B are prepared to evaluation of the effect of coating on tension and fatigue crack growth behavior. The pre-crack of the fatigue crack growth test specimens machined at deposited material area, heat affected zone and boundary, respectively. Through these test, the following results are obtained: 1) Tensile strength was about 498 MPa, and fracture occurred on base metal area. 2) The fatigue crack of coated specimens propagated more rapidly than non-coated specimen in all specimens. 3) In the same coating thickness specimens, the specimens with pre-crack at boundary more rapidly propagated than the specimens with pre-crack at HAZ and deposited material area. These results can be used as basic data in a structural integrity evaluation of rolled SM490B weldments considering HVOF coating.

Experimental study on combustion characteristics of high efficiency oxy-fuel burner (고효율 순산소 버너의 연소 특성에 관한 실험적 연구)

  • Kim, Se-Won;Ahn, Jae-Hyun;Kim, Min-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.57-64
    • /
    • 2002
  • This paper describes the results of a series of experiments executed by using two pilot-scale oxv-fuel burners are designed for maximum capacity of 50,000 kacl/hr, 300,000 kcal/hr and installed in the test furnace. The effects of turn-down ratio, excess oxygen ratio, nozzle exit velocity, injection angle, swirl vane angle and inlet oxygen temperature on the combustion characteristic are investigated. Temperature distributions are measured using R-type and Molybdenum sheathed C-type thermocouple. The results showed that maximum temperature and mean temperature increase with the increase of turn-down ratio and inlet oxygen temperature. The maximum flame temperature was increased about 35% compared to the case of equivalent air operated condition. In addition, Optimum excess oxygen ratio and nozzle characteristics are obtained for this oxy-fuel glass melting furnace.

  • PDF

Effects of Temperature, Pressure, Gas Velocity, and Capacity on Reduction Characteristics of Mass Produced Particle in a 0.5 MWth Chemical Looping Combustion System (0.5 MWth 급 케미컬루핑 연소시스템에서 대량생산 산소전달입자의 환원반응 특성에 미치는 온도, 압력, 유속 및 용량의 영향)

  • RYU, HO-JUNG;LEE, DOYEON;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOOSEOB;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.53-62
    • /
    • 2021
  • Batch type reduction-oxidation tests were performed to check effects of temperature, pressure, gas velocity, and capacity on reduction characteristics of mass produced particle in a 0.5 MWth chemical looping combustion system. The fuel conversion and the CO2 selectivity increased as the temperature increased and as the gas velocity decreased. However the CO2 selectivity showed the maximum and decreased as the capacity increased because the CO emission increased. The results show that high temperature, low gas velocity and low inert gas concentration are preferable to ensure high reactivity of oxygen carrier in the fuel reactor.

Microstructural and Wear Properties of WC-based and Cr3C2-based Cermet Coating Materials Manufactured with High Velocity Oxygen Fuel Process (고속 화염 용사 공정으로 제조된 WC계 및 Cr3C2계 Cermet 코팅 소재의 미세조직 및 마모 특성)

  • Kang, Yeon-Ji;Ham, Gi-Su;Kim, Hyung-Jun;Yoon, Sang-Hoon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.408-414
    • /
    • 2018
  • This study investigates the microstructure and wear properties of cermet (ceramic + metal) coating materials manufactured using high velocity oxygen fuel (HVOF) process. Three types of HVOF coating layers are formed by depositing WC-12Co, WC-20Cr-7Ni, and Cr3C2-20NiCr (wt.%) powders on S45C steel substrate. The porosities of the coating layers are $1{\pm}0.5%$ for all three specimens. Microstructural analysis confirms the formation of second carbide phases of $W_2C$, $Co_6W_6C$, and $Cr_7C_3$ owing to decarburizing of WC phases on WC-based coating layers. In the case of WC-12Co coating, which has a high ratio of $W_2C$ phase with high brittleness, the interface property between the carbide and the metal binder slightly decreases. In the $Cr_3C_2-20CrNi$ coating layer, decarburizing almost does not occur, but fine cavities exist between the splats. The wear loss occurs in the descending order of $Cr_3C_2-20NiCr$, WC-12Co, and WC-20Cr-7Ni, where WC-20Cr-7Ni achieves the highest wear resistance property. It can be inferred that the ratio of the carbide and the binding properties between carbide-binder and binder-binder in a cermet coating material manufactured with HVOF as the primary factors determine the wear properties of the cermet coating material.

Anti-Corrosion Characteristics of WC-based Alloy Coatings Fabricated by HVOF Process - Polarization Characteristics in Acid Solution - (HVOF 용사법에 의해 제조된 WC계 합금 코팅층의 방식특성(I) - 산성용액에서의 분극특성 -)

  • Kim, Tae-Yong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.72-77
    • /
    • 2014
  • The aim of this study to investigate polarization characteristics of WC-based alloy coatings fabricated by high velocity oxygen fuel(HVOF) process. The coatings were fabricated by HVOF process with WC-CrC-Ni, WC-Co-Cr, WC-Co composite powders. Corrosion tests were carried out using potentiostat/galvanostat at solution with pH 2 and pH 6. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. WC-Co-Cr coating showed more incorrodible characteristics than other coatings at solution pH 2. WC-CrC-Ni coating was more favorable anti-corrosion characteristics than other coatings at solution with pH 6.

Fabrication, Microstructure and Adhesion Properties of BCuP-5 Filler Metal/Ag Plate Clad Material by Using High Velocity Oxygen Fuel Thermal Spray Process (고속 화염 용사 공정을 이용한 스위칭 소자용 BCuP-5 filler 금속/Ag 기판 클래드 소재의 제조, 미세조직 및 접합 특성)

  • Joo, Yeun A;Cho, Yong-Hoon;Park, Jae-Sung;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.226-232
    • /
    • 2022
  • In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 ㎛, and the surface fluctuation is measured as approximately 3.2 ㎛. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.

Effect of Post Heat Treatment on the Microstructure and Mechanical Properties of BCuP-5 Filler Metal Coating Layers Fabricated by High Velocity Oxygen Fuel Thermal Spray Process on Ag Substrate (고속 화염 용사 공정으로 제조된 BCuP-5 필러 금속 코팅층/Ag 기판 클래드 소재의 후열처리에 따른 미세조직 및 기계적 특성 변화)

  • Park, So-Yeon;Youn, Seong-June;Park, Jae-Sung;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.283-290
    • /
    • 2022
  • A Cu-15Ag-5P filler metal (BCuP-5) is fabricated on a Ag substrate using a high-velocity oxygen fuel (HVOF) thermal spray process, followed by post-heat treatment (300℃ for 1 h and 400℃ for 1 h) of the HVOF coating layers to control its microstructure and mechanical properties. Additionally, the microstructure and mechanical properties are evaluated according to the post-heat treatment conditions. The porosity of the heat-treated coating layers are significantly reduced to less than half those of the as-sprayed coating layer, and the pore shape changes to a spherical shape. The constituent phases of the coating layers are Cu, Ag, and Cu-Ag-Cu3P eutectic, which is identical to the initial powder feedstock. A more uniform microstructure is obtained as the heat-treatment temperature increases. The hardness of the coating layer is 154.6 Hv (as-sprayed), 161.2 Hv (300℃ for 1 h), and 167.0 Hv (400℃ for 1 h), which increases with increasing heat-treatment temperature, and is 2.35 times higher than that of the conventional cast alloy. As a result of the pull-out test, loss or separation of the coating layer rarely occurs in the heat-treated coating layer.

Reaction Characteristics of New Oxygen Carrier for 0.5 MWth Chemical Looping Combustion System at High Temperature and High Pressure Conditions (0.5 MWth 케미컬루핑 연소 시스템 적용을 위한 신규 산소전달입자의 고온·고압 반응 특성)

  • KIM, JUNGHWAN;LEE, DOYEON;NAM, HYUNGSEOK;JO, SUNG-HO;HWANG, BYUNG WOOK;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.473-482
    • /
    • 2018
  • To check applicability of recently developed new oxygen carrier for 0.5 MWth chemical looping combustion system, reactivity tests were carried out at high temperature and high pressure conditions. Pressure, temperature, gas velocity, $CH_4$ flow rate, and solid height were considered as operating variables. The new oxygen carrier (N016-R4) showed not only high fuel conversion but also high $CO_2$ selectivity within all the operating conditions in this study. The reactivity of N016-R4 particle was compared with previous oxygen carriers. The N016-R4 particle represented outstanding reactivity among 10 oxygen carriers in terms of fuel conversion and $CO_2$ selectivity.