References
- Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16(2):256-68. https://doi.org/10.1007/s00330-005-2919-2
- Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510-7. https://doi.org/10.1007/s00330-006-0517-6
- Yoshizumi T. Dual Energy CT in Clinical Practice. Med Phys. 2011;38(11):6346. https://doi.org/10.1118/1.3642476
- McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology. 2015;276(3):637-53. https://doi.org/10.1148/radiol.2015142631
- Forghani R, De Man B, Gupta R. Dual-Energy Computed Tomography: Physical Principles, Approaches to Scanning, Usage, and Implementation: Part 1. Neuroimaging Clin N Am. 2017;27(3):371-84. https://doi.org/10.1016/j.nic.2017.03.002
- Lam S, Gupta R, Kelly H, Curtin HD, Forghani R. Multiparametric Evaluation of Head and Neck Squamous Cell Carcinoma Using a Single-Source Dual-Energy CT with Fast kVp Switching: State of the Art. Cancers (Basel). 2015;7(4):2201-16. https://doi.org/10.3390/cancers7040886
- Li B, Yadava G, Hsieh J. Quantification of head and body CTDI(VOL) of dual-energy x-ray CT with fast-kVp switching. Med Phys. 2011;38(5):2595-601. https://doi.org/10.1118/1.3582701
- Omoumi P, Becce F, Racine D, Ott JG, Andreisek G, Verdun FR. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 1). Semin Musculoskelet Radiol. 2015;19(5):431-7.
- Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol. 1976;21(5):733-44. https://doi.org/10.1088/0031-9155/21/5/002
- Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ. Extraction of information from CT scans at different energies. Med Phys. 1979;6(1):70-1. https://doi.org/10.1118/1.594555
- Karcaaltincaba M, Aktas A. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn Interv Radiol. 2011;17(3):181-94.
- Kim YK, Park SH, Kim YM. Comparison of Bone Volume Measurements Using Conventional Single and Dual Energy Computed Tomography. Journal of Radiological Science and Technology. 2017;40(2):253-9. https://doi.org/10.17946/JRST.2017.40.2.10
- Patel BN, Thomas JV, Lockhart ME, Berland LL, Morgan DE. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol. 2013;68(2):148-54. https://doi.org/10.1016/j.crad.2012.06.108
- Kim MS. Quantitative Analysis of Bone Mineral Measurements in Different Types of Dual-energy Absorptiometry Systems: Comparison of CT vs DEXA. Journal of Radiological Science and Technology. 2017;40(2): 311-6. https://doi.org/10.17946/JRST.2017.40.2.18
- Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21(7):1424-9. https://doi.org/10.1007/s00330-011-2062-1
- Glazebrook KN, Guimaraes LS, Murthy NS, Black DF, Bongartz T, Manek NJ, et al. Identification of intraarticular and periarticular uric acid crystals with dual-energy CT: initial evaluation. Radiology. 2011;261(2):516-24. https://doi.org/10.1148/radiol.11102485
- Robinson E, Babb J, Chandarana H, Macari M. Dual source dual energy MDCT: comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Invest Radiol. 2010;45(7):413-8. https://doi.org/10.1097/rli.0b013e3181dfda78
- Graser A, Becker CR, Staehler M, Clevert DA, Macari M, Arndt N, et al. Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol. 2010;45(7):399-405. https://doi.org/10.1097/rli.0b013e3181e33189
- Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS. Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology. 2008;249(2):671-81. https://doi.org/10.1148/radiol.2492071956
- Schmid-Bindert G, Henzler T, Chu TQ, Meyer M, Nance JW, Jr., Schoepf UJ, et al. Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol. 2012;22(1):93-103. https://doi.org/10.1007/s00330-011-2230-3
- Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078-86. https://doi.org/10.1001/archinternmed.2009.427
- McNitt-Gray MF. AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT. Radiographics. 2002;22(6):1541-53. https://doi.org/10.1148/rg.226025128
- Li B, Behrman RH. Comment on the "report of AAPM TG 204: size-specific dose estimates (SSDE) in pediatric and adult body CT examinations" [report of AAPM TG 204, 2011]. Med Phys. 2012;39(7):4613-4; author reply 5-6. https://doi.org/10.1118/1.4725756
- Sodickson A. Strategies for reducing radiation exposure in multi-detector row CT. Radiol Clin North Am. 2012;50(1):1-14. https://doi.org/10.1016/j.rcl.2011.08.006
- Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG. Technical principles of dual source CT. Eur J Radiol. 2008;68(3):362-8. https://doi.org/10.1016/j.ejrad.2008.08.013
- McCollough CH LS, Yu L. CT dose index and patient dose: they are not the same thing. Radiology. 2011;259(2):311-6. https://doi.org/10.1148/radiol.11101800
- Schindera ST, Nelson RC, Mukundan S, Jr., Paulson EK, Jaffe TA, Miller CM, et al. Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection--phantom study. Radiology. 2008;246(1):125-32. https://doi.org/10.1148/radiol.2461070307
- Bauer RW, Kramer S, Renker M, Schell B, Larson MC, Beeres M, et al. Dose and image quality at CT pulmonary angiography-comparison of first and second generation dual-energy CT and 64-slice CT. Eur Radiol. 2011;21(10):2139-47. https://doi.org/10.1007/s00330-011-2162-y
- Cho YS, Jeong WK, Kim Y, Heo JN. Radiation Doses of Dual-Energy CT for Abdominopelvic CT: Comparison with Single-Energy CT. Journal of the Korean Society of Radiology. 2011;65(5):505-12. https://doi.org/10.3348/jksr.2011.65.5.505
- Purysko AS, Primak AN, Baker ME, Obuchowski NA, Remer EM, John B, et al. Comparison of radiation dose and image quality from single-energy and dual-energy CT examinations in the same patients screened for hepatocellular carcinoma. Clin Radiol. 2014;69(12):e538-44. https://doi.org/10.1016/j.crad.2014.08.021
- Jepperson MA, Cernigliaro JG, Ibrahim el SH, Morin RL, Haley WE, Thiel DD. In vivo comparison of radiation exposure of dual-energy CT versus low-dose CT versus standard CT for imaging urinary calculi. J Endourol. 2015;29(2):141-6. https://doi.org/10.1089/end.2014.0026
- Im AL, Lee YH, Bang DH, Yoon KH, Park SH. Dual energy CT in patients with acute abdomen; is it possible for virtual non-enhanced images to replace true non-enhanced images? Emerg Radiol. 2013;20(6):475-83. https://doi.org/10.1007/s10140-013-1141-9
- Schenzle JC, Sommer WH, Neumaier K, Michalski G, Lechel U, Nikolaou K, et al. Dual energy CT of the chest: how about the dose? Invest Radiol. 2010;45(6):347-53. https://doi.org/10.1097/rli.0b013e3181df901d