DOI QR코드

DOI QR Code

Comparison of Estimated and Measured Doses of Dual-energy Computed Tomography

Dual-energy 컴퓨터단층촬영에서 장비 제공선량과 측정선량 비교

  • Kim, Yung-Kyoon (Department of Radiology, Samsung Medical Center) ;
  • Kim, Yon-Min (Department of Radiotechnology, Wonkwang Health Science University)
  • 김영균 (삼성서울병원 영상의학과) ;
  • 김연민 (원광보건대학 방사선과)
  • Received : 2018.07.13
  • Accepted : 2018.10.11
  • Published : 2018.10.31

Abstract

We will provide basic data on the evaluation of patient dose in terms of DECT quality control by comparing the equipment-provided dose with the measured dose according to the configuration method of the X-ray generator by the manufacturer of the dual-energy CT unit. For computed tomography (CT) equipment, Discovery 750HD, Aquilion ONE GENESIS Edition, and Somatom Definition Flash were used. The $CTDI_{vol}$ value was measured by inserting the Unfors Xi ion chamber into a 32 cm PMMA acryl Phantom. The results of estimated $CTDI_{vol}$ DECT and measured $CTDI_{vol}$ showed that the dose difference between DECT 80 + 140 kVp of G company was at least 0.51% and -1.90% max, and measured $CTDI_{vol}$ was slightly lower (p<0.05). The difference of 80 + 140 kVp of S company was the minimum of 5.84% and the maximum of 7.52% (p<0.05). The measured $CTDI_{vol}$ was less than estimated $CTDI_{vol}$. The C company's 80 + 135 kVp showed a difference of at least 7.58% and a maximum of 13.58% (P<0.05), and all of measured $CTDI_{vol}$ was less. The linearity of exposure dose for all DECT equipment was very linearly reflected with $R^2$ being 0.97 or above, and the measured dose of the ionization chamber was less than the predicted dose of the monitor.

Keywords

References

  1. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006;16(2):256-68. https://doi.org/10.1007/s00330-005-2919-2
  2. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510-7. https://doi.org/10.1007/s00330-006-0517-6
  3. Yoshizumi T. Dual Energy CT in Clinical Practice. Med Phys. 2011;38(11):6346. https://doi.org/10.1118/1.3642476
  4. McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology. 2015;276(3):637-53. https://doi.org/10.1148/radiol.2015142631
  5. Forghani R, De Man B, Gupta R. Dual-Energy Computed Tomography: Physical Principles, Approaches to Scanning, Usage, and Implementation: Part 1. Neuroimaging Clin N Am. 2017;27(3):371-84. https://doi.org/10.1016/j.nic.2017.03.002
  6. Lam S, Gupta R, Kelly H, Curtin HD, Forghani R. Multiparametric Evaluation of Head and Neck Squamous Cell Carcinoma Using a Single-Source Dual-Energy CT with Fast kVp Switching: State of the Art. Cancers (Basel). 2015;7(4):2201-16. https://doi.org/10.3390/cancers7040886
  7. Li B, Yadava G, Hsieh J. Quantification of head and body CTDI(VOL) of dual-energy x-ray CT with fast-kVp switching. Med Phys. 2011;38(5):2595-601. https://doi.org/10.1118/1.3582701
  8. Omoumi P, Becce F, Racine D, Ott JG, Andreisek G, Verdun FR. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 1). Semin Musculoskelet Radiol. 2015;19(5):431-7.
  9. Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol. 1976;21(5):733-44. https://doi.org/10.1088/0031-9155/21/5/002
  10. Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ. Extraction of information from CT scans at different energies. Med Phys. 1979;6(1):70-1. https://doi.org/10.1118/1.594555
  11. Karcaaltincaba M, Aktas A. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn Interv Radiol. 2011;17(3):181-94.
  12. Kim YK, Park SH, Kim YM. Comparison of Bone Volume Measurements Using Conventional Single and Dual Energy Computed Tomography. Journal of Radiological Science and Technology. 2017;40(2):253-9. https://doi.org/10.17946/JRST.2017.40.2.10
  13. Patel BN, Thomas JV, Lockhart ME, Berland LL, Morgan DE. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol. 2013;68(2):148-54. https://doi.org/10.1016/j.crad.2012.06.108
  14. Kim MS. Quantitative Analysis of Bone Mineral Measurements in Different Types of Dual-energy Absorptiometry Systems: Comparison of CT vs DEXA. Journal of Radiological Science and Technology. 2017;40(2): 311-6. https://doi.org/10.17946/JRST.2017.40.2.18
  15. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21(7):1424-9. https://doi.org/10.1007/s00330-011-2062-1
  16. Glazebrook KN, Guimaraes LS, Murthy NS, Black DF, Bongartz T, Manek NJ, et al. Identification of intraarticular and periarticular uric acid crystals with dual-energy CT: initial evaluation. Radiology. 2011;261(2):516-24. https://doi.org/10.1148/radiol.11102485
  17. Robinson E, Babb J, Chandarana H, Macari M. Dual source dual energy MDCT: comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Invest Radiol. 2010;45(7):413-8. https://doi.org/10.1097/rli.0b013e3181dfda78
  18. Graser A, Becker CR, Staehler M, Clevert DA, Macari M, Arndt N, et al. Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Invest Radiol. 2010;45(7):399-405. https://doi.org/10.1097/rli.0b013e3181e33189
  19. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS. Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology. 2008;249(2):671-81. https://doi.org/10.1148/radiol.2492071956
  20. Schmid-Bindert G, Henzler T, Chu TQ, Meyer M, Nance JW, Jr., Schoepf UJ, et al. Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol. 2012;22(1):93-103. https://doi.org/10.1007/s00330-011-2230-3
  21. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078-86. https://doi.org/10.1001/archinternmed.2009.427
  22. McNitt-Gray MF. AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT. Radiographics. 2002;22(6):1541-53. https://doi.org/10.1148/rg.226025128
  23. Li B, Behrman RH. Comment on the "report of AAPM TG 204: size-specific dose estimates (SSDE) in pediatric and adult body CT examinations" [report of AAPM TG 204, 2011]. Med Phys. 2012;39(7):4613-4; author reply 5-6. https://doi.org/10.1118/1.4725756
  24. Sodickson A. Strategies for reducing radiation exposure in multi-detector row CT. Radiol Clin North Am. 2012;50(1):1-14. https://doi.org/10.1016/j.rcl.2011.08.006
  25. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG. Technical principles of dual source CT. Eur J Radiol. 2008;68(3):362-8. https://doi.org/10.1016/j.ejrad.2008.08.013
  26. McCollough CH LS, Yu L. CT dose index and patient dose: they are not the same thing. Radiology. 2011;259(2):311-6. https://doi.org/10.1148/radiol.11101800
  27. Schindera ST, Nelson RC, Mukundan S, Jr., Paulson EK, Jaffe TA, Miller CM, et al. Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection--phantom study. Radiology. 2008;246(1):125-32. https://doi.org/10.1148/radiol.2461070307
  28. Bauer RW, Kramer S, Renker M, Schell B, Larson MC, Beeres M, et al. Dose and image quality at CT pulmonary angiography-comparison of first and second generation dual-energy CT and 64-slice CT. Eur Radiol. 2011;21(10):2139-47. https://doi.org/10.1007/s00330-011-2162-y
  29. Cho YS, Jeong WK, Kim Y, Heo JN. Radiation Doses of Dual-Energy CT for Abdominopelvic CT: Comparison with Single-Energy CT. Journal of the Korean Society of Radiology. 2011;65(5):505-12. https://doi.org/10.3348/jksr.2011.65.5.505
  30. Purysko AS, Primak AN, Baker ME, Obuchowski NA, Remer EM, John B, et al. Comparison of radiation dose and image quality from single-energy and dual-energy CT examinations in the same patients screened for hepatocellular carcinoma. Clin Radiol. 2014;69(12):e538-44. https://doi.org/10.1016/j.crad.2014.08.021
  31. Jepperson MA, Cernigliaro JG, Ibrahim el SH, Morin RL, Haley WE, Thiel DD. In vivo comparison of radiation exposure of dual-energy CT versus low-dose CT versus standard CT for imaging urinary calculi. J Endourol. 2015;29(2):141-6. https://doi.org/10.1089/end.2014.0026
  32. Im AL, Lee YH, Bang DH, Yoon KH, Park SH. Dual energy CT in patients with acute abdomen; is it possible for virtual non-enhanced images to replace true non-enhanced images? Emerg Radiol. 2013;20(6):475-83. https://doi.org/10.1007/s10140-013-1141-9
  33. Schenzle JC, Sommer WH, Neumaier K, Michalski G, Lechel U, Nikolaou K, et al. Dual energy CT of the chest: how about the dose? Invest Radiol. 2010;45(6):347-53. https://doi.org/10.1097/rli.0b013e3181df901d